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S UMMARY

A new computer program, called TRANAIR, for analyzing complex configurations

in transonic flow (with subsonic or supersonic freestream) has been developed. This

program provides accurate and efficient simulations of nonlinear aerodynamic flows

about aritrary geometries with the ease and flexibility of a typical panel method

program.

The numerical method implemented in TRANAIR is described in this report.

The method solves the full potential equation subject to a set of general boundary

conditions and can handle regions with differing total pressure and temperature. The

boundary value problem is discretized using the finite element method on a locally

refined rectangular grid. The grid is automatically constructed by the code and

is superimposed on the boundary described by networks of panels; thus no surface

fitted grid generation is required. The nonlinear discrete system arising from the finite

element method is solved using a preconditioned Krylov subspace method embedded

in an inexact Newton method. The solution is obtained on a sequence of successively

refined grids which are either constructed adaptively based on estimated solution

errors or are predetermined based on user inputs. Many results obtained by using

TRANAIR to analyze aerodynamic configurations are presented.





Chapter 1

INTRODUCTION

1.1 MOTIVATION

The role of computational modeling in engineering design has been well recognized

for many years. Engineering problems are routinely solved through numerical simu-

lations. In the aerospace industry, for example, aerodynamic flow about aircraft is

often simulated using computational tools. Computational Fluid Dynamics (CFD)

is rapidly becoming an equal partner with the wind tunnel and flight testing in the

design of aerodynamic shapes [1, 2, 3].

Many engineering designs are geometrically complex. In aerodynamics, problems

such as the analyses of close-coupled nacelles and high lift systems on a typical trans-

port aircraft configuration (see Figure 1.1) can involve extremely complicated geome-

tries and highly nonlinear flows containing shock waves and convected wakes. The

geometry and flow become even more complex for a fighter type aircraft (see Fig-

ure 1.2). There is a lack of tools that can routinely handle such complex geometries

and treat the appropriate physical phenomena.

Such tools should be reliable, accurate, flexible and efficient. Among the currently

available computational tools, panel methods [4]-[14] have long been able to han-

dle complex configurations and boundary conditions in a reliable manner, but they

are limited to linear flow models. Aerodynamicists who use panel methods take for

granted the ability to add, move, or delete components at will, readily select and

change boundary condition types, and obtain accurate solutions at reasonable cost.

Multiply connected regions (flap gaps, nacelle interiors), varying length scales, and

flow features such as oblique shocks (in supersonic freestream flow), present few prob-

lems to a good panel method. Consequently, there are many instances where designers

have compromised the physics of the problem and used panel methods in order to

try to understand the aerodynamic effects of complex geometry [15],[16]. However,

there are other instances involving transonic flows with normal shocks where such

compromises are not possible.

The state of the art in calculating transonic flows has progressed significantly

since the initial breakthrough by Murman and Cole [17]. Much success has been

achieved in solving various forms of the potential equation, the Euler equations, and

even the Navier-Stokes equations for special configurations [18]-[35]. Nevertheless,
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Figure 1.1: Complete Transport Configuration.



Figure 1.2: Typical Fighter-Type Configuration with Store.



routine analysisof complexconfigurations using more realistic physics has remained
a somewhatdistant goal. There areseveralreasonsfor this.

First and foremost, most current methods usesurfacefitted grids. Generationof
such grids for complex, multiply connecteddomains is an extremely difficult task.
Although significant progresshas beenmade in grid generation techniquesover the
last five years, timely treatment of configurations similar to those shown in Figures 1.1

and 1.2 still remain beyond the capabilities of these methods.

Second, current transonic algorithms place severe demands on grids. Few algo-

rithms can adequately handle the anomalies which would result from the application

of present grid generation techniques to complex configurations, e.g., non-analytic

grids, collapsed edges, fictitious corners, oblique and/or high aspect ratio cells, etc.

Third, many transonic methods are limited to normal flow boundary conditions.

Panel methods routinely allow design boundary conditions, porous wall boundary

conditions, surface jump conditions, etc. These types of boundary conditions are

difficult to implement in the field grid methods.

Fourth, computer run costs can be very high. In the course of airframe design,

engineers make hundreds of runs varying angle of attack, Mach number, flap set-

tings, inlet mass ratios, nacelle placement, etc. Thus it is imperative that individual

runs be fairly economical. This is clearly a difficult goal to achieve for large config-

urations, especially when the grid must be fine enough for the reliable prediction of

drag increments. For many methods use of additional grid points causes substantial

degradation in convergence with corresponding increase in cost.

In this report an approach developed to overcome these problems is described. This

approach has been implemented in a computer program called TRANAIR[36]-[51].

It has all the modeling generality and flexibility offered by the PAN AIR technology

panel code [10] while solving the nonlinear full potential equation.

The most important feature of this approach is the use of rectangular grids com-

bined with an independently-described configuration definition. The grid is superim-

posed over the configuration surface. The configuration surface is defined in terms of

panels. (see Figure 1.3). This makes the program very easy to use since no surface fit-

ted grids are required. Clearly a rectangular grid can always be superimposed on the

configuration regardless of surface topology. But, there are several issues associated

with rectangular grids that must be addressed.

First, in order to accurately capture small scale effects, even for relatively simple

geometries, local grid refinement is essential. (It should be noted that local grid

refinement is also necessary for other approaches that use surface fitted grids for

complex configurations, since bunching grid lines is only feasible when there are just

a few regions requiting dense grids.) The grids used in TRANAIR are therefore locally
refined.

Second, rectangular grids cannot take advantage of a directional difference in

length scales in a straightforward manner since high aspect ratio cells skew to the

coordinate axes cannot be created by varying grid density. However, this leads to

only modest increases in the number of grid points for inviscid solutions if the locally

refined grid is located judiciously.

Third, combining a general boundary configuration with a rectangular grid pro-



Figure 1.3: TRANAIR Geometry Scheme.

ducesirregularly shapedregionsnearthe boundary. The problemof defining accurate
discrete equations(operators) at node points adjacent to theseregionscan be solved
by using a finite element method. In TRANAIR the finite elementmethod is imple-
mentedusing the Bateman variational principle [52]. A generalizationof the Bateman
principle allowseasyimplementationof nonstandardboundaryconditions. Away from
the boundary, apphcation of the finite element method is straightforward except :or
the treatment of infinite domains. The condition at infinity is satisfied using con-
cepts from integral equation methods whereby potential unknowns are transformed
to sourceunknowns. The inversetransformation is easily accomphshedthrough the
useof fast Fourier transforms (FFT's) on rectangular grids.

The finite set of equationsthus generatedis solvediteratively by an inexact New-
ton method. At eachstep of the Newton method the GenerahzedMinimal RESidual
algorithm (GMRES) [53],[54]is usedas adriver to solvethe linearizedproblem. GM-
RES is preconditioned by a Poisson solver and a direct sparse solver. Fast and reliable

convergence is achieved by combining these preconditioners in a unique manner. The

robustness of the method is achieved through the use of a sequence of refined grids

which are either constructed adaptively based on estimated solution errors or are

predetermined based on user inputs.



1.2 REPORT ORGANIZATION

This is the Theory Document for the TRANAIR program. In this document the

theoretical aspects of TRANAIR are described. A fairly comprehensive description of

the method is provided in Chapter 2. Results obtained using the TRANAIR code are

described in Chapter 3. In Chapter 4 ideas on future directions are discussed. Many

topics which require more detail are discussed in the Appendices. The appendices are

oct-tree data structures (Appendix A), implementation of the Bateman variational

principle (Appendix B), GMRES algorithm (Appendix C), the exterior Poisson solver

(Appendix D), and the sparse solver preconditioner (Appendix E).

Information on how to use TRANAIR is provided in the User's Manual [55]. Specif-

icaUy, the preparation of input required by the program and the scripts (job control

cards) required to run the code on the Cray Y-MP at NASA Ames Research Center

(UNICOS) and the Cray X-MP at Boeing (COS) are described.



Chapter 2

METHOD

In this chapter a comprehensive description of the numerical method used in TRANAIR

is provided. This numerical method combines diverse component algorithms in an
effective manner.

There are eight sections in this chapter. In Section 2.1, the boundary value problem

to be solved is presented. In Section 2.2, an outline of the method is provided. In

Sections 2.3 and 2.4 the discretization and the solution techniques respectively, are

described. In Section 2.5 a postprocessing technique to obtain smooth aerodynamic

quantities is presented. In Section 2.6, the extension of the method to problems

in supersonic free stream flow is described. In Section 2.7, certain programming
considerations are discussed.

2.1 PROBLEM DEFINITION

2.1.1 Governing Equation

The full potential equation of aerodynamics is

y(_) - ¢. p¢¢ = o (2.1)

where _ is the total velocity potential to be determined, and the density is given by

qoo J

Here, q = [_[ is the local speed, I_oo is the uniform onset flow, qoo = IVooI is the

free stream speed, poo is the free stream density, Moo is the free stream Mach number,

and 0' is the ratio of specific heats. Equation (2.1) describes the conservation of mass

in inviscid irrotational compressible flow.

2.1.2 Boundary Conditions

Boundary conditions on the configuration surface are required to define a well posed

problem. The far field condition is



¢=O(R ) (2.3)

as x ---* -oo, i.e., u_pstream of the object. The perturbation potential is given by
@ = _ - _oo where V_oo = Voo.

A wide variety of boundary conditions may be specified on the aircraft configura-

tion. Normal mass flux may be specified via

0_
P_n'n = gl (2.4)

where n represents the direction normal to the surface. On an impermeable surface

ga vanishes, whereas, on surfaces such the engine inlets nonzero values for 91 can be

specified.

On engine exhaust surfaces, it is possible to impose the Dirichlet condition

¢ = 93 (2.5)

where tangential flow can be prohibited by specifying g3 to be constant.

Wakes must extend downstream from lifting bodies. These surfaces allow nonzero

circulation in potential flow and can be thought of as thin sheets of concentrated

vorticity [5]. The boundary conditions on a wake are

h. A(pV_) = 0 (2.6)

and

Ap=O (2.7)

where

h is the unit normal vector, and A represents the jump across the wake surface. Equa-

tion (2.6). is an expression of conservation of mass across the wake. Equation (2.7)

is required for conservation of normal momentum. Equation (2.7) is often linearized

about the free stream pressure p = poo assuming small perturbation velocity _¢. This

leads to the Dirichlet condition that A_ is constant along the wake in the direction

of Voo. The circulation kL at the trailing edge is determined by imposing a Kutta

condition there (see Appendix B.3).

2.1.3 Variational Formulation

The full potential equation may also be derived from the Bateman variational prin-

ciple [52], namely, that the integral of pressure over the flow field

10



t

J = Ja p dn (2.9)

is stationary. This principle can be used to derive finite element formulas for the full

potential equation, (see Section 2.3 below). Taking a variation of J in Eqn. (2.9) and
using

Op
--.-=- v (2.10)
OV

it can shown that

,_J = - W" 3 v dfl (2.11)

Integrating by parts,

(2.12)

where _ is the boundary of the domain or surface of discontinuity with unit normal

h. (The second integral on the right applies to both sides of _ in the case of a surface

of discontinuity.) If J is stationary with respect to arbitrary variations in _, the first

integral on the right of Eqn. (2.12) yields the mass conservation equation

V.W=0 (2.13)

This equation is identical to Eqn. (2.1). The second integral on the right yields

conservation laws for surfaces of discontinuity. For a shock surface across which mass
is continuous it follows that

/',(m w) = o (2.14)

For a slip surface across which _ may be discontinuous, h. IU must vanish on both

sides. The discontinuity in _ is determined by Eqn. (2.7).

The natural boundary condition for Eqn. (2.9) may be deduced from Eqn. (2.12), i.e.,

h.W=O (2.15)

A generalization of the Bateman variational principle which incorporates the bound-
ary conditions described above is that the functional

J = f_pdV+fo 9x_dS (2.16)
fh

L
+ fort3 O_ e - g )dS

11



is stationary. Here, gl is the specified mass flux on 0f_l, Aq_ is the jump in q_ across

the wake surface 0f_2, c_ denotes the average of the upper surface and lower surface

values, and g3 is the specified potential on 01"/3. The unknown # represents the jump

in q) on 0f_2 and is determined by Eqn. (2.7).

2.1.4 Regions with Differing Total Properties

A minor modification of the above formulation allows the simulation of flows involving

regions of differing total temperature and total pressure. The flow in each separate

region is still potential as long as total temperature and pressure are constant in the

region, but pressure and density must be redefined in the following way:

p= poorp 1 + M_(1 q_rT ) (2.17)

[r, 1 + M_(1 ) (2.18)
P=P_r-_ q_ T I

Here, rp is the ratio of the total pressure in the region to the free stream total pressure

and rT is the ratio of total temperature in the region to free stream total temperature.

The regions are assumed to be separated by fixed wake surfaces on which two jump

boundary conditions are applied. The first is the standard static pressure continuity

condition Eqn. (2.7). If the total pressure and/or temperature differences across the

wake are large, the pressure formula, Eqn. (2.7) cannot be linearized, i.e., # can not be

assumed to be constant in the downstream direction. The second condition is similar

to Eqn. (2.6) but requires a modification to make the answer less sensitive to wake

position when total pressure and temperature differences are large. Equation (2.6) is

replaced by

= 0 (2.19)
where

_p.= p_oq® p_ (2.20/
poqo

Here, qo is the speed which makes p = poo in the given region and po is the density

at this speed. Equation (2.6) becomes a natural jump boundary condition for ¢" =

qoo_/qo if the Bateman principle is modified so that

J = ft_ p'dV (2.21)

where

(2.22)
p* = p poq2o •

Using this feature, exhaust from engines can be modeled as long as the exhaust can be

divided into a finite number of regions each of which has a constant entropy. Section

3.2.5 gives an example of this type of modeling.

12



2.2 OUTLINE OF THE METHOD

An overview of the numerical method in TRANAIR is shown in Figure 2.1.

TRANAIR uses a locally refined rectangular grid. This grid is generated (Sec-

tion 2.3.3) in a computational domain which extends only as far as is required to

enclose all configuration surfaces and any nonlinear flow (Section 2.3.2). First a uni-

form global grid is constructed over the rectangular computational region. Grid cells

in the global grid are refined by subdividing a given cell into eight similar cells. The

decision to refine or not is controlled by two criteria. In the first specified minimum

and maximum cell sizes are used. In the second the density of paneling used to define

the surface geometry is used. The size of the local grid box is forced to lie within

these two limits. Denser grid is automatically generated where the panels are smaller.

Both these forms of control can be exercised over a global region or over certain spe-

ciaUy prescribed hexahedral regions. Thus, it is possible to specify arbitrary local
hierarchical refinement.

The solution process is carried out over a sequence of grids. This sequence of grids

is either predetermined by successively derefining the above constructed grid (in the

grid sequencing option); or is constructed adaptively (in the solution adaptive grid

option) where the solution is started on the coarsest grid in the above sequence and

the subsequent grids are constructed based on estimates of solution error.

The process of obtaining a solution on each grid is essentially the same in either

option and involves two steps. The first involves discretization of the continuous

problem and the other involves the solution of the discrete equations.

In the discretization step, the field unknowns • are defined at the eight corners

of each grid cell and the potential in the cell is defined via trilinear basis functions

(Section 2.3.4). The unknown parameters are supplemented by boundary unknowns

_b which are values of potential extrapolated across a boundary, and wake unknowns

which are introduced to satisfy the normal momentum jump condition Eqn. (2.7).

The Bateman variational principle is used to accurately discretize the continuous

problem (Section 2.3.4). In particular, this discretization is flux conservative. Special

discrete operators are generated for the unknowns near the boundary.

The nonlinear discrete equations are solved iteratively using a Newton method

(Section 2.4.2). An initial guess required to start the Newton method is obtained

by interpolating the solution on a coarse grid to the next finer one; except on the

coarsest grid, where the perturbation potential _ is taken to be exactly zero.

For complex configurations involving correspondingly complex physical phenom-

ena, it is advantageous to use more than one technique to solve the algebraic equa-

tions. Each technique by itself might reduce errors more rapidly in some subsets

of physical and frequency space than in others. Hence it is desirable to treat these

techniques as "preconditioners" for an overall convergence stabilization and acceler-

ation scheme such as GMRES (Section 2.4.1). The operators from the finite element

method are used to compute residuals and the Jacobian matrix which is inverted

using a sparse matrix solver and used as one of the preconditioners (see Appendix E).

The iteration is stopped after the converged solution is obtained on thc final grid in

the sequence.

13
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.

Generate finest grid based on geometry and user specified
controls

Extract a sequence of grids from the finest grid by repeatedly

coarsening all parts of the grid by one refinement level

For each grid (starting with the coarsest) solve the problem

3.1 Generate Boundary Operators

3.2 Generate Green's function for the current global

grid

3.3 Interpolate initial solution for the current grid

3.4 Solve the discrete equations using Newton's

3.5

3.6

method

3.4.1 Generate and decompose the Jaco-
bian if needed

3.4.2 Solve the linearized problem via GM-

RES

Compute residuals

Combine sparse solver and Poisson

solver preconditioners

3.4.3 Compute nonlinear update

3.4.3 Return to 3.4.1 if Newton's Method

did not converge

If solution adaptive gridding used

3.5.1 Compute local error estimates

3.5.2 Compute new grid

If not on final grid then return to 3.1

4. Extract aerodynamic output

Figure 2.1: Overview of the Numerical Method in TRANAIR.
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At the conclusionof the solution process, the potential at each grid point is avail-

able. From the potential, a wide variety of information concerning the flow about the

configuration may be obtained. Velocities in the field about the configuration may

be computed, from which streamlines, Mach contours, density distributions, pres-

sure coefficients, force and moment coefficients about the configuration, etc., can be

computed.

2.3 DISCRETIZATION

In this section, the discretization process is described. First, the representation of the

surface boundary is described. Next, the restriction of computations to a finite region

is justified. Then, the computational grid and its generation are described. This is

followed by a description of the finite element operators. Grid interfaces between

different levels of refinement, modifications of the Bateman principle, and artificial

dissipation are described at the end.

2.3.1 Boundary Representation

In TRANAIR, the boundary is described independently of the volume discretization.

The geometry of the configuration is represented by a set of networks each consisting

of a rectangular array of corner points which form arbitrarily shaped quadrilaterals

called panels (see Figures 2.2). The panels serve the purpose of limiting the region of

integration for the Bateman variational functional. No fundamental unknowns (such

as the doublets or sources in linear panel methods) are associated with the panels

except for wakes, where a discrete set of doublet unknowns,/_, are defined at various

corner points of the wakes.

2.3.2 Finite Computational Domain

The computations are restricted to a finite subset of the infinite space. The restriction

to a finite computational domain can be justified in the following way.

Suppose that the partial differential operator _ is equal to a constant coefficient

differential operator 7" everywhere outside a finite rectangular region. Let _ be a

Green's function for 7" such that 7"(!7 * Q) = Q for all Q (where Q are called sources)

and (b = _ • Q + (boo satisfies the far field condition. Then the original differential

equation .7--(b = 0 is equivalent to

Q + (_'- 7")(_ • Q + (boo) = o. (2.23)

Outside the finite rectangular region, _" = 7" so that Q = 0. Thus, the unknowns Q

are confined to a bounded region.

For full potential flow, the far field operator is the Prandtl-Glauert operator

7"¢ = (1 - Al_)(b_ + (buy + Czz

Equation (2.24) is a linearization of the full potential Eqn. (2.1) about 1,3oo.

(2.24)
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Figure 2.2: Configuration Boundary Description in Terms of Networks of Panels
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For most problems Q approaches zero (away from the boundary) much more

rapidly than • approaches @_. This enables the termination of the computational

domain a short distance away from the boundary or regions of nonlinear flow. Wakes,

which extend to infinity, are exceptions which produce sources and sinks that extend

to infinity downstream of the configuration. By assuming that such sources and sinks

are constant in the downstream direction, their influence can be computed by using

a downstream Green's function (see Appendix D).

If the continuous operators are replaced by discrete ones, the same argument holds.

The requirement on T, the discrete version of T, is that a discrete Green's function

G is available that satisfies an appropriate discrete far field condition and T(G *

Q) = Q for all Q. In practice, this means that T is a constant coefficient elliptic

operator discretized on a uniform Cartesian grid [36],[39],[89],[90],[94],[96]. Thus, the

computational domain need only cover the region where nonlinear flow occurs and

where the discrete version L of the operator .P" is not approximated well by a discrete

far field operator T. The discrete operator T used in the method is the standard

seven point finite difference operator.

2.3.3 Computational Grid

The volume grid in the finite computational domain is generated automatically by the

code. TRANAIR can operate in one of two modes, either grid sequencing (discussed

in Section 2.4.3) or solution adaptive gridding (described in Section 2.4.4). In either

case it is necessary to specify a starting grid. The process for constructing the grid
is described below.

First, the finite computational region is chosen to be rectangular and is divided

into a coarse uniform rectangular grid, called the global grid, which is independent

of the boundary surfaces. To facilitate matching between the nonlinear flow inside

and the linear flow outside, the global grid includes one plane of unrefined global grid

boxes on each face of the computational domain where L -- T. These boxes remain

unrefined and no boundary surface is allowed to cut these boxes (except boxes on the

downstream face of the computational domain which can be cut by wakes). This is

required because the source Q is assumed to be zero on the boundary points of the

global grid.

The global grid is locally refined in a hierarchical manner, i.e., any grid box can

be refined into eight geometrically similar boxes of equal volume. This process is

repeated to give a grid with any desired local resolution and is controlled by two

criteria.

The first criterion for local refinement is based on the length scale of the surface

panels used to describe the boundary. Every box element that is sufficiently close

to a panel is refined if a weighted length scale (the panel diameter multiplied by a

panel tolerance factor which is provided as input) associated with the panel is smaller

than the length scale associated with that box element. A box is deemed to be in the

neighborhood of a panel if a scaled version of it generated by expanding it around

its center intersects that panel. The ezpansion factor by which the boxes are scaled

can also be specified. This factor is useful if it is desired to extend the effect of the
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presenceof the boundary on the grid refinement further out into the volume grid.
The panelbasedcriterion is effectivein providing local refinementnear the boundary
surface.

The second criterion is the requirement that the local box size is restricted to be in a

specified range (dx,,_in,dx,_). Boxes are refined recursively until their size is smaller

than dx_,_:. Further refinement depends on the panel based criterion. Refinement

based on comparison with dx,,,** is useful in problems where high gradients, such as

shock waves, exist in regions away from the boundary surface.

Both criteria for refinement can be invoked over either the entire computation

box or over certain special regions of interest or disinterest where different desired

ranges of box sizes and panel tolerance factors are defined. The special regions are

hexahedral and provide ample flexibility in generating desired local refinement.

Once all specified refinements are done, the grid is legalized so that two boxes

abutting on a face or an edge differ by at most one refinement level. This ensures

sparse stencils for the finite element operators and simplifies certain data structures

[56], but allows sufficiently rapid changes in grid level.

Locally refined box elements formed by the process described above are usually

an unstructured collection of box elements. To completely describe these elements

an oct-tree data structure is used. The tree is formed as boxes are created through

refinement. A box and node numbering system is developed from the tree and adja-

cency and other information is extracted. (See [41], [57] and Appendix A for more

details.)

A grid generated in this manner may be considered to be a prescribed grid. This

grid is sequentially derefined to generate a set of coarse to fine grids. If no solution

adaptation is used then the iterative solution is obtained on this sequence of grids

by starting with the coarsest and moving through the finer grids. If the adaptive

method is used then the coarsest grid is used to start the solution and all subsequent

grids are determined according to estimated local solution errors. In either case the

initial guess for the starting grid is zero and for each subsequent grid is obtained by

interpolating the solution from the previous grid.

2.3.4 Finite Element Operators

The discrete operators on every grid in the sequence are constructed using a finite

element method. Implementation of the finite element method for rectangular boxes

away from the boundary and irregular boxes near the boundary is described below.

Element Trial Functions

Every rectangular element is geometrically identical except for a scale factor. The

standard trilinear element trial function, parameterized by eight corner unknowns is

used (see Figure 2.3). The trial functions used for elements near the boundary are

also represented in a similar manner (see below). In order to generate as compact

a stencil as possible (e.g., standard seven point operator for Poisson's equation on a

uniform grid) certain lumping terms are added (see Appendix B).
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Figure 2.3: Box Finite Element With Eight Corner Unknowns.

Implementation of the Variational Principle

Element stiffness matrices are generated by taking variations of the functional J with

respect to each degree of freedom. If only natural boundary conditions are present,

(reiterating Eqn. (2.11) and noting that 1_ = pl_ and 6V = V6¢) variation of J are

given by

(2.25)

i i

Here, Pi is the value of p at the centroid of the elemental region f_i. The last step

in equation (2.25) is equivalent to replacing p by a piecewise constant function. This

approximation of the operator coefficients maintains second order accuracy for the

potential in the L2 norm and first order accuracy in the energy norm [58].

Near Field and Far Field Boxes

Near field bozes are boxes not cut by any boundary surface, but where L # T.

Equation (2.25) defines the element stiffness matrices by considering variations of J

with respect to each of the eight corner unknowns of the element. Thus, every near

field box has the same element stiffness matrix up to a constant factor that depends

only on the refinement level of the element and Pi. This results in large savings in

storage. In addition, p is a nonlinear function of the velocity and is evaluated at the

centroid of each element during every iteration. Thus, discrete formulas for velocity
at the centroids in terms of the unknowns at the corners of the element are needed.

Since all near field box elements are similar, only one velocity formula needs to be

stored, resulting in additional large savings in storage.

The far field bozes lie on faces of the computational domain where L = T. These

boxes are geometrically identical. Also the density is constant in these boxes since
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the linear flow properties are matched. Hencethe operators for all suchboxes are
identical.

Boundary Boxes and D Regions

Boundary boxes are those cut by a boundary surface. A connected subset of a bound-

ary box is referred to as a D-region, (see Figure 2.4). Each D-region is bounded by

a subset of the boundary surface as well as possibly subsets of the box faces. No D-

regions are defined in the interior of the configurations since the flow there is defined

to satisfy ¢ = 0. Hence, a box cut by a boundary surface with flow on one side and

no flow (referred to as stagnation) on the other would have only one D-region, for

example region Ds in Figure 2.4. It is possible to have more than one D-region in a

boundary box. This is the case in Figure 2.4 for D-regions D1 and D2 where a wake
divides an element.

Since boundary conditions on a surface can induce discontinuities in _ or V_, a

separate element trial function is needed for each D-region. The element trial function

for each such D-region is parameterized by unique unknowns at the corners of the

grid box. Corner unknowns on the other side of a boundary surface from their D-

region can be viewed as extrapolated values and are denoted by @. In Fig. 2.4 the

@L unknowns correspond to the element trial function in D2 and the @v unknowns

correspond to the element trial function in D1. There is a one-to-one correspondence

between element trial functions in the box and D-regions.

Stiffness Matrices for D-regions

Each D-region also has a distinct element stiffness matrix that must be stored. The

coefficient of the differential operator, p, is evaluated at the centroid of the D-region

and hence distinct velocity operators are also required for each D-region. However,

these boundary elements represent typically only 10 to 20% of the elements needed

to give an accurate solution of the boundary value problem.

The element stiffness matrices D-regions are derived from an expanded version of

Eqn. (2.25) including appropriate surface integral terms. The domain of integration

for the volume integral is the relevant D-region. The domain for the surface integrals

is the intersection of the boundary with the boundary of that D-region. Since the

integrand is a product of polynomials, volume moments must be computed over the

D-region.

Consider the volume moment

H(I, J, K) =/D x_-lYJ-_zK-_dV" (2.26)

Since the boundary is parameterized by piecewise flat panels, this moment can be

computed exactly via the following procedure. By Gauss' theorem

1 Is xl-lyJ-lzg-'(h" R)dS (2.27)g(I,g,g) = I + J + K
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whereS is the bounding surface and/_ = (x, Y, z). Since S is the union of flat surfaces

Si,

where

1

H(I,J,K) - I + J + K _ Fs' (2.28)
I

Fs, = n_:F(I + 1,J,K) + nyF(I,J + 1,K) + nzF(I,J,K + 1) (2.29)

and

F(I, J, K) = jQ xZ-Xy"-lzK-ldS (2.30)

Each Si is assumed to be a polygon whose perimeter is the union of straight lines

Tij. Using Stokes' theorem, F(I, J, K) for fixed i may be evaluated recursively by the

formula

where

1 [ ]F(I,J,K) = I + J + K-1 (h. R)F_ + _7, E_ (2.31)
J

F_ = n,:(I- 1)F(I- 1,J,K) + nu(J- 1)F(I,J- 1,K)

+n,(K- 1)F(I,J,K- 1)

E_ = u,E(I + 1,J,K) + uuE(I,J + 1, K) + uzE(I,J,K + 1)

where with t denoting the edge tangent vector, b is the edge normal vector t® h, and

E(I, J, K) is defined by

J,K) = [_ xt-lya-lzK-ldl. (2.32)E(I,
.11, J

Using simple one dimensional integration formulas E(I, J, K) may be evaluated re-

cursively by the formula

where

1

E(I,J,K) = I + J + K- 2 [E_ + D,] (2.33)

E( = (I 1)_.E(I- 1,J,K) + (J- 1)(yE(I,J- 1, K)

+(K- 1)_zE(I,J,K- 1)

Dt = t,D(I + l,J,g) + t_D(I,J + l,g) + tzD(I,J,K + l)
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where (-- (t ®/_) ® _ (constant along Tij), and D(I,J,K) = xl-lyJ-1zK-1 I_, where

1 and 2 represent the initial and final points of T O. Thus, the original integrals (2.26)

defined over a complicated volume can be systematically reduced to point evaluations

at vertices of the bounding surface. The surface moments arising out of the surface

integrals in Eqn. (2.17) can be computed starting with Eqn. (2.30). Note that the

location of the centroid in each D-region can be computed from the zero and first

order moments. Further details on the operator generation including an example of

operator calculations are given in Appendix B.

Identifying D-regions

There remains, of course, the problem of identifying D-regions and their bounding

surfaces. This is done in three stages.

First, for each panel, a list of grid boxes containing any part of the panel is con-

structed. Because the grid is rectangular and hierarchical in nature it is relatively

easy to isolate the subset of boxes which are located within a neighborhood of a given

panel. Moreover, because the boxes are rectangular and the panels are divided into

flat triangles it is straightforward to determine if boxes in a neighborhood of a panel

in fact contain any part of the given panel. This list is then inverted to find all the

panels intersecting a given boundary box.

In the second stage a list of equivalence classes of panel sides for each boundary

box is constructed. A panel side is either the upper or lower surface of a panel. An

equivalence class consists of all panel sides which are connected to each other through

panel edges. A panel side is connected to another panel side if the two panels share

a common edge that is partially or wholly contained within the given boundary box

and if there is no intervening panel also connected to that edge.

In the third stage separate connected regions of the boundary box are identified.

This is done by choosing points on different panel side equivalence classes and then

joining them with straight fines. The set of panels cutting these straight lines is

examined and the panel side equivalence classes of panels responsible for successive

cuts are identified as members of a new equivalence class of panel sides which bound

a connected region. Polygonal subsets of a face of the boundary box are included in

such an equivalence class whenever a panel side is discovered to intersect the face.

This algorithm determines connected regions within a boundary box. However it is

also necessary to determine which such regions are connected to regions in adjacent

boxes. This is because of the necessity of maintaining continuity of element trial

functions across box faces and edges. For this purpose a list of which panels in each

boundary box region intersect box faces is stored. These intersections are compared

with those in an adjacent box and connections between regions are established. The

parameters at common nodes of connected regions are then identified.

2.3.5 Grid Interfaces

In the finite element method, conservation of mass results if the element trial functions

are continuous from box to box. This property can be retained in the presence of
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grid refinement by introducing pseudo-unknowns. By definition a pseudo-unknown is

any unknown located at a node on the boundary of some element but not at a corner
of this element. This can occur only at a coarse to fine grid interface. In the two

dimensional case, pictured in Figure 2.5, ¢bl is a pseudo-unknown whose parents are

¢2 and _3. In the situation pictured in Figure 2.4, @ps is a pseudo-unknown whose

parents are ¢bp and @p.

In order to maintain continuity of the element trial functions across element bound-

aries, ¢1 in Figure 2.5 must be the average of its parents, that is

1

¢1 = _(@2 + _3) (2.34)

In three dimensions, pseudo-unknowns can occur at the midpoints of element edges

or the centers of element faces. For a pseudo-unknown ¢bl at the center of an element

face with four parents ¢2,@3,_4, and ¢5,

1

¢1 = _(_2 + _3 + ¢4 + _s). (2.35)

Thus, pseudo-unknowns are not true degrees of freedom and could be eliminated at

the outset from the element stiffness matrices through Equation (2.35). However,

this would result in loss of uniformity in these matrices, many special cases, and loss

of vectorization. Hence these unknowns are treated as degrees of freedom when the

element stiffness matrices are generated. In the process of evaluating the discrete

operator L, pseudo-unknowns are first assigned values by averaging their parent un-

knowns. Residuals of the governing equations are produced at these unknowns but

are then distributed to the residuals for their parents. This process of distributing

residuals to parents is justified by Eqn. (2.35) and a straightforward application of

the chain rule

dJ OJ OJ 0_1 aJ 1 aJ

d¢2 0_2 + 0_1 0_2 a_2 + 4 0_1 (2.36)

Thus, the component of the residual of the discrete version of Eqn. (2.25) calculated

for _1 should be equally distributed to the residuals for the four parent unknowns.

This technique has the advantage that every element stiffness matrix produces con-

tributions only to the 8 corner unknowns of its box element, thereby simplifying the

generation of the stiffness matrices and enhancing vectorization. Vectorizing over

large blocks of similar elements can be done using an outer loop over the eight corner

unknowns and an inner loop over the elements in the block.

2.3.6 Modifications to the Bateman Principle

To achieve a stable numerical formulation, the treatment of Dirichlet boundary con-

ditions and wake surfaces must be modified. In addition, the natural Neumann condi-

tion must be modified to account for boundary curvature, since the solution is often

sensitive to this quantity and the boundary is discretized using flat panels. These

modifications are described below.
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Figure 2.5: Pseudo-Unknown in Two Dimensions.

The introduction of the last surface integral in the variational principle (2.17)

enforces a Dirichlet condition on 0f13. Equation (2.17) can then be used to calculate

the element stiffness matrices in a finite element formulation. It turns out that the

resultant discrete problem is somewhat unstable. In certain instances one can show

that the boundary unknowns @ actually satisfy a discrete Helmholtz equation and

an oscillatory solution is, in fact, obtained. This phenomenon is probably related to

the fact that J is no longer maximized in subsonic flow with Dirichlet data. This

suggests a remedy which has been implemented and which has been found to be very

reliable numerically. The last integral in Eqn. (2.17) is replaced by

- P g3)21 dS (2.37)

where A1 is the minimum diameter of the box containing the trial function. A similar

term may be added to the second integral.

All surfaces are represented by flat panels. Resultant discontinuities in slope from

panel to panel will be reflected in the solution as the grid is refined. In most cases,

this effect is spurious, since the surface slope discontinuities are artifacts of the panel

description of the surface. To eliminate this problem, a curved surface is simulated

by adding to the variation of Eqn. (2.17) a surface integral

OJ=OJ + / p_@. h')O@dS (2.38)
JO gtx

where h" is a polynomial interpolation of ¢_ and 0¢ denotes the variation of _. The

endpoints for the polynomial interpolation of the normal are user controlled to allow

discontinuities in slope where they are actually present.

2.3.7 Dissipation

First order upwinding of the density is used to produce the artificial viscosity required

when supersonic flow is present [22, 25]. Such upwinding is given by replacing p in
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the'full potential equation with

= p- #V. __p (2.39)

where 17 is the normalized local velocity and /__p is an upwind undivided difference.

In Eqn. (2.39) p is the switching function given by

# = max(l - M_/M2,0) (2.40)

where M is the local Mach number and Mc is the cut-off Mach number assigned the

value M_ = 0.95 chosen to introduce dissipation just below Mach 1.0.

An alternative to upwinding the density is to use flux biasing i.e. upwind the flux

pq where q = [[ V [I2 • Flux biasing may be expressed in a form similar to Eqn.(2.39)

by writing

where

1 ((pq) _ _/. Dx_ (p"_)) (2.41)

__ _ pq for M > 1
(2.42)

Pq- ], p'q* forM_< 1

Here, p'q'is the value of pq at sonic flow conditions.

For either form of dissipation, the upwinding is done across the face of a box with

a precomputed stencil. A density or flux is chosen for each of the six faces of an

element when the operators are generated. For a uniform grid with no boundaries,

each box has a single box adjacent to it across each of its six faces. In case of grid

refinement, there are two other cases. If the adjacent box is refined, the density used

for upwinding is obtained by averaging the densities for the four adjacent refined

elements. If the adjacent box is coarser, then three densities are averaged. In two

dimensions, the possibilities for upwinding to the left across an edge are illustrated

in Figure 2.6.

Upwinded density _ is defined by

6

-- P + U __, max(-V . F_,, O)S,([ ?) _ Ci,j(pij -- p) (2.43)
/-----1 j

where i runs over the 6 faces of the given box, j runs over the densities averaged to

obtain the density upwinded to, Ci.j is the coefficient for each of the four densities

contributing to the density upwinded to, _' is the normalized velocity at the centroid

of the given element, fii is the outward pointing normal to face i of the element,
and S,(V) is a cubic blending function to make the upwinding differentiable. This

upwinding is first order accurate, introducing an error comparable to replacing the

density p with a piecewise constant approximation in each element. In the case of

D-regions, special operators must be constructed based on local information about

box adjacency. This information is extracted from the oct-tree (see Appendix A) and

D-region lists in a preprocessing step.
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Figure 2.6: Upwinding Stencils in Two Dimensions for Negative x Edge.
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2.3.8 Accuracy of Discretization

By keeping the trialfunctions parameterized by values at the corners of similarboxes,

uniformity of the basis [58]isguaranteed. Thus, in the limit,standard approximation

theory and finiteelement error estimates hold. The asymptotic convergence of the

method has been verifiedwith uniform gridsfor the case of a sphere in incompressible

flow where an analytic solutionisavailable[36].Sections 3.1 and 3.2 contain compu-

tational examples that demonstrate the method's accuracy for locallyrefined grids.

There isno theoreticalguarantee of good conditioning. However, experience to date

with the code has not uncovered any conditioning problems forthe cases in the range

from 8000 to 600000 grid points and refinedgridswith relativelevelsof i0 below the

global grid level.
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2.4 SOLUTION ALGORITHM

2.4.1 Linear Solution Algorithm

The solution technique used in TRANAIR was designed for nonlinear problems. How-

ever, it is useful to describe the algorithm applied to the special case of a linear

boundary value problem.

Discrete System

The generic linear potential equation

_. (p_) = f (2.44)

is considered with p = p(x,y,z) assumed to be given and strictly positive. The

boundary conditions are those described earlier in Section 2.1.

In order to enforce the far field condition given by Eqn. (2.3), source unknowns Q

are introduced on the global grid and replace unknowns (I) there. Since Q is known

to be zero on the boundary of the global grid, the residual does not need to be

computed there. The extrapolated values in boundary boxes are denoted by @, all

other variables on the refined grid are denoted by _, and the doublet parameters on

wakes are denoted by p. The finite element operator described in Section 2.3.4 will be

denoted by L. It is defined over the whole grid except on the boundary of the global

grid and is evaluated by multiplying the element stiffness matrices by the vector of

unknowns.

Thus it is necessary to solve the linear system of equations

T-1Q )
L '_ = f. (2.45)

P

Preconditioned System

Since the system (2.45) (depending on boundary conditions) is non-symmetric and

non-definite the GMRES method of Sand and Schultz [53] is chosen as the basic

iterative solver.

The operator, T -1, used to obtain the potential from the sources acts as an effective

right preconditioner for the global grid points. It is also necessary to use a left

preconditioner, to approximate the problem near the internal boundaries. The left

preconditioner, N, is taken to be the global stiffness matrix restricted to a reduced set

of unknowns. The reduced set is defined to consist of all unknowns located at corners

of boundary boxes, refined boxes, or boxes with total pressure or temperature different

form free stream values, and the doublet parameters #. The stagnation unknowns

(those that are located in the interior of the configuration) are not included in the

reduced set. The reduced set is closed by closure unknowns which are outside the

reduced set but in the stiffness matrix stencil of some unknown in the reduced set.
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The boundary condition at closure unknowns is an approximation to the far field

condition for the original problem, i.e., ¢ = 0.

Note that there is some overlap between the Q unknowns on the global grid precon-

ditioned by T -a and those in the reduced set preconditioned by N -_. For unknowns

Q at global grid points in the reduced set, an additional preconditioner T must be

applied on the left to make the equation dimensionally correct.

Hence, in all there are five classes of unknowns in a given flow problem. They are:

• QO), the source unknowns at global grid points which are not in the reduced set

and not in stagnation regions;

• Q(2), the source unknowns at global grid points in the reduced set or in stagnation

regions;

• _, the values of the velocity potential at points on locally refined grids;

• _, the values of velocity potential in the boundary basis functions;

• #, the doublet strengths at leading edges of wake networks.

The preconditioned equation can then be written as

TN-'(f - LT-'X) = 0 (2.46)

where

The operators T and N are defined as:

QO)

Q(2)

(I)

#

(2.47)

T0)0) T(1)(_) 0 0 0 /

T(2)(a) T(2)(2) 0 0 0

T= 0 0 I 0 0 (2.48)
0 0 0 I 0

0 0 0 0 I

[,oooo/0 N(:)(2) N(2)(3) N(2)(4) N(2)(5)

N= 0 N(3)(2) N(3)(3) N(a)(4) N(3)(s) . (2.49)

0 N(4)(2) N(4)(3) N(4)(4) N(4)(s)

0 N(5)(2) N(5)(3) N(5)(4) N(5)(5)

To achieve invariance with respect to units, the source unknowns Q must be scaled

relative to the potential unknowns (the scale factor has the dimension of the inverse

length squared). After scaling, the GMRES convergence history is independent of

the physical units used to define the problem.
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Preconditioned Residual

The calculation of the preconditioned residual R (the function evaluation subroutine

for GMRES) is now described.

For unknowns QO) (those on the global grid but not in the interior of the reduced

set)

(Q'a')/
Q(:)

(I)

Z-1

R(Q(1))= f- L (2.50)

For unknowns @2) (those on the global grid and in the interior of the reduced set

or located at global grid points in stagnation regions)

Q(:) )
R(Q (2)) = TN -_ f- L (_ . (2.51)

#

In Eqn. (2.51), special account must be taken of unknowns Q located in stagnation

regions, such as the interior of wings and fuselages. For these unknowns, it is impor-

tant to realize that N -1 is just the identity, f = 0, and L# = ¢. Thus T is applied to

the global grid unknowns in the reduced set, closure point unknowns, and stagnation

unknowns. But the input for T at stagnation unknowns comes from a different pro-

cess than that used for the other two classes of Q unknowns. Another special class

of Q unknowns in Eqn. (2.51) are those at closure points. N -1 does apply to the

residual at these points producing input values for T to give residual values for points

in the reduced set. But for these closure unknowns, the residual is actually given by

Eqn. (2.50).

For unknowns _ not located on the global grid and for all unknowns ffJ and #

( /R(_) = N-XL • . (2.52)

R(u)
#

For • unknowns located at points not in the global grid but in stagnation regions,

the residual is given by R(_) = L¢ = ¢.

Preconditioners

The operator T -1 represents the discrete Green's function and is defined over the

uniform global grid. Construction and application of the discrete Green's function

(Poisson Solver) is extremely fast since one can take advantage of the constant grid
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spacingand usediscrete Fourier transforms. More details on this preconditioner are
give in Appendix D.

The left preconditioner matrix N is sparse and it is feasible to do a direct sparse

incomplete factorization of N. This works for the following reasons. First, a drop tol-

erance can be introduced into the sparse elimination process allowing small elements

in the decomposition to be dropped as they are generated. This has a cascading effect

and reduces fill dramatically [43]. Second, a grid based nested dissection ordering can

be generated which reduces fill during elimination and therefore the total amount

of work. In most cases the drop tolerance is the most effective strategy. Figure 2.7

shows the reduced set and a possible first dissector for a grid for a sphere case. More

details on the sparse solver preconditioner are given in Appendix E.
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Figure 2.7: Reduced Set and Possible First Dissector.

2.4.2 Nonlinear Solution Algorithm

When the problem is nonlinear it is necessary to use the Newton method. Each step

of the Newton method requires the solution of a linear problem of the type discussed
in Section 2.4.1.

Newton Method

Consider the nonlinear system of equations

F(x)=O. (2.53)

Given an initial approximate solution x °, for n = O, 1, 2, ... until the residual is suffi-

ciently small, set
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x"+l = x" + _(&.+l)

where 6x '*+1 is the solution of the linear system

(2.54)

T..(& "+1)= -F(x") (2.55)

and )_ is a step length to be determined. Here T: is the Jacobian for F linearized

about x'*. This linear operator can be defined by giving its action on any vector y

,,- F(x + _y) - F(_)
Tx(_) =, -,0 (2.56)

The step length A is selected so that

IIF(:+I)II < llF(x")ll (2.57)

in some appropriate norm.

The GMRES algorithm can be used to solve Eqn. (2.55). This algorithm requires

only the ability to calculate the action of the linear operator T_ on any vector y.

Equation (2.56) can be used to approximate this action

T.(u) ---F(_ + _u)- F(_) (2.58)

where e is small in some appropriate sense. Thus, the linear problem, Eqn. (2.55),

can be solved without ever explicitly generating the Jacobian for the full nonlinear

problem.

To control the cost of the method Eqn. (2.55) is solved only approximately with

GMRES, i.e., 6x '_+x satisfies

lIT=-(&"+_)+ F(:)II< ,7.

This makes the method an inexact Newton method [59]. If rt is constant, the method

converges linearly. If rI goes to 0 as convergence takes place, the convergence is

superlinear. More details can be found in [54].

Preconditioning GMRES

Preconditioning Eqn. (2.55) is identical to that used for linear systems and given in

Eqn. (2.46). If f is replaced by -F(x"), L by T_,, and T-1X by x, Eqn. (2.46) is the

same as Eqn. (2.55) preconditioned on the left by TN -1. For convenience, the finite

difference formula (2.58) is applied to TN-1F rather than F. The matrix forms of

T, N, and T -1 are given in Section 2.4.1.
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The matrix N is an approximation to the Jacobian for F about the current solution

restricted to a reduced set as described in Section 2.4.1 above. The reduced set now

also includes all elements where upwinding is used.

The matrix N is generated on an element by element basis using the element

stiffness matrices. The density function p and its derivatives are evaluated at element

centroids. For unknowns one of whose eight contributing elements has upwinding in

effect, the row of the matrix N depends on more than just these eight elements. The

algorithm can be simplified by applying the chain rule to the calculation of a matrix

entry,

dF(@), OF(_)i OF(@), 0_, (2.59)= +E
k

where t_ is given by Eqn. (2.39). The first term on the right is the contribution from

the subsonic stencil, i.e., the element stiffness matrices. The second term is generated

using a sparse matrix-matrix multiply. This technique enables vectorization even

though the upwinding is element dependent.

The convergence of the inexact Newton method depends on how well the matrix

N represents the Jacobian of F. If the damping strategies described below are used

it is usually necessary to compute and invert matrix N infrequently.

Local Damping of Newton Method

Newton's method is rarely globally convergent. Also, its convergence rate is generally

quadratic only sufficiently close to the solution. The initial iterate is usually taken

to be ¢ = 0, which is not a good approximation to the solution. Thus, Newton's

method works well only for moderate to small problems or those with only weak or

no shocks. For large problems or problems with reasonably strong shocks, Newton's

method must be damped to prevent divergence or very slow convergence.

Various damping strategies have been tested in the present method. One due to

Bank and Rose [60] for determining the step length )_ is based on the residual for

Eqn. (2.1). This strategy is fairly simple to implement and provides adequate local

damping in many cases.

Another strategy is to limit )_ to prevent local Mach numbers greater than some

prescribed cut off value. This prevents spurious large velocities from causing stagna-

tion of convergence. In the ONERA M6 wing results reported below, this strategy
was wed with a local Mach number cutoff of v/5.

However, local damping strategies of this kind are only effective by themselves in

cases that almost converge anyway. In more difficult transonic cases, a steep shock

can form in the wrong location early in the iterative process and the Newton method

can stagnate. In this case, a local method can rarely move the shock more than one

grid point per iteration, resulting in very slow convergence. This situation seems to

be due to the fact that the residual is much larger near the shock than elsewhere.

The shortcomings of the local damping strategies can be seen in the case of the

ONERA M6 wing at M_¢ = 0.84 and angle of attack a = 3.06 ° on a grid having about

311,000 elements. This case exhibits a strong shock outboard as well as an oblique
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shock. If Newton's method is used with an initial iterate ¢ = 0 and the Bank-Rose

strategy for limiting )_, the convergence stagnates at the iterate shown in Figure 2.8.

The final converged solution is shown for reference. If )_ is further limited to control

local Mach numbers as described above, the convergence is still very slow. Figure

2.9 shows the Newton iterate after six and twelve Newton steps. Newton's method is

moving the shock toward the correct location very slowly.

Viscosity Damping

To improve convergence in the presence of shock waves, a problem dependent dissi-

pation is used. Here a larger amount of dissipation is introduced during the early

iterations and it is reduced to appropriate levels as the solution develops. This type

of damping strategy can be implemented through a continuation process which can

be based on many types of parameters.

In the first, and more direct approach (called the viscosity damping strategy), the

discrete problem is modified by multiplying the switching function of Eqn. (2.54) by

a constant factor (1.5 to 3.0) and by reducing the cut-off Mach number during the

initial steps in the Newton method. This has the effect of increasing the amount

of artificial viscosity and applying it to a larger part of the flow field. After several

Newton steps, the problem is modified by reducing the multiplying factor and raising

the cut-off Mach number. This process is repeated until the desired level of dissipation

is reached. This continuation process works very well since it has the effect of locating

the supersonic zone and the shock position fairly early in the process, even though

the shock is quite smeared.

When, viscosity damping is used in the case of the ONERA M6 wing, conver-

gence improves considerably after the initial viscous problems are partially solved.

A partially converged solution at the second continuation step (Newton step seven)

is shown in Figure 2.10. Figure 2.11 shows the convergence histories for these runs.

The residual jumps in this figure correspond to discrete changes in the continuation

parameter. The drawback of this continuation approach is the high cost of even

partially solving the viscous problems that are introduced.

Several other parameters were used as continuation parameters including free

stream Mach number (Moo) and the total pressure of the free stream. In both cases,

the shock location was sensitive to the continuation parameter and convergence was

poor in certain cases.

2.4.3 Grid Sequencing

A strategy that has proven to be very reliable for ensuring convergence for difficult

transonic problems is grid sequencing. Basically the process involves the following

steps. A sequence of coarse to fine grids are generated a priori. The solution is found

on the coarsest grid. The converged solution is interpolated onto the next finer grid

and the problem is solved on that grid. This is repeated until the solution is obtained

on the finest grid. A gradual change in viscosity is brought about by the fact that the

grid cell size in the initial stages (on coarse grids) is larger and thus the dissipation
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is larger. As the grid becomes finer the dissipation is automatically reduced. The

process of interpolating the solution naturally positions the nonlinear features in the

solution. It is also possible to employ viscosity damping on any or all the grids in

the sequence with some simple code modifications. The benefits of this approach are

more reliable convergence and lower computer cost.

The results for the ONERA M6 case are presented below. With grid sequencing,

this case converged rapidly. As discussed in Section 2.4.1, this case did not converge

when residual and local Mach number damping was used with Newton's method with

an initial guess of _b= 0. Convergence was obtained in two ways. Initially, viscosity

damping was used and it was found that four continuation steps were required. With

grid sequencing, this case converged more rapidly and CPU times were proportionally

reduced. Figure 2.12 compares convergence histories for these three methods. Iter-

ations in the grid sequencing run are scaled by the approximate size of the problem

for the early small grids (this scaling corresponds approximately to CPU cost). Grid

sequencing offers a substantial advantage in both rate of convergence and storage

requirements. For the grid sequencing run, CPU time was about half of that needed

for the viscosity damping run.

Cuts through the three grids used are shown in Figures 2.13 through 2.16. The

final fine grid is the last of these three grids. The grids had about 19,000, 56,000, and

311,000 elements respectively. Figure 2.17 shows surface pressures obtained on the

three grids used in this case. On the coarser grids, the shock is in the right location

but smeared.

2.4.4 Solution Adaptive Grids

The grid sequencing method described in Section 2.4.3 operates on a set of pre-

constructed grids in which the refinement is governed a priori by the configuration

surface definition and other specifications (see Section 2.3.3). The solution adaptive

grid method starts with the coarsest grid in the preconstructed sequence of grids.

The overall procedure in discretizing the problem on the current grid and solving

the discrete equations is identical to that described so far (see Sections 2.3 and 2.4).

However the solution adaptive method differs from the grid sequencing method in two

regards. The first difference is that in the adaptive method, the next grid is generated

anew and the local resolution of the new grid is determined by a posteriori computed

local error estimates and user inputs (rather than being taken from the pre deter-

mined sequence). The second difference is that in creating the new grid single-level

local refinement as well as derefinement may be used. In refining, a rectangular box

element is replaced by eight smaller similar elements, whereas, in derefining, eight

sibling elements are coalesced to form a larger similar element.

The goal of the adaptive grid method is to obtain a final grid with a (specified)

target number of elements, N, and a numerical solution on that grid that is nearly

as accurate as the best solution one could obtain using N elements in any grid. To

achieve this goal five sequential steps are carried out in creating each new grid. These

steps consist of estimating local errors on the previous grid, computing local error

predictors, applying a priori grid refinement controls, applying a grid refinement
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Figure 2.14: Cut Through the Fine Grid Generated by Grid Sequencing for ONERA

M6 Wing at 91°£ Span, Moo = 0.84, a = 3.06 °.

strategy, and constructing the new grid.

Use of the method components in these steps is novel in the present context, but

the basic ideas behind them have been proposed before by other researchers [61]-[68].

The performance of the present solution adaptive grid method depends somewhat

strongly on the characteristics of individual applications, and the specific method

components employed. The specific method components were chosen after substantial

but nonexhaustive, testing and analysis.

Computing Local Error Estimates

Local differences of velocity components are used as estimates of the error for each

rectangular I element in the grid. The error estimate for an element consists of

errest= max tmaxI(/Xvi'J)2 +(/xv;'J) 2 + (2.60)
regson r j

where, for the rth solution region contained in the element, Av[ 'j denotes the dif-

ference across the element's jth face of the region centroid values of the ith velocity

component. The outer maximum in Eqn. (2.60) is taken over all regions contained

lit should be recognized that the finite element method is applied on the regions over which the

element trial functions are defined. These regions are part of the rectangular box elements. The

grid refinement process refines box elements, and new regions are determined for the subdivided box
elements. The grid refinement process does not refine individual regions.
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M6 Wing at the Plane of Symmetry, M_ = 0.84, a = 3.06 °.

in the element. The inner maximum is taken over all element faces connecting to

a region not contained in a larger element. Figure 2.18 illustrates in the case of a
two dimensional airfoil the directions in which velocity components are differenced to

compute error estimates for five elements, labeled A-E, each of which contains only

one solution region.
This error measure provides a natural way to detect flow features having different

length scales near different configuration components and does not lead to excessive

grid in the far field.

Computing Local Error Predictors

A simple local smoothing algorithm is used to form error predictors from the local

error estimates. In this algorithm, nodal values are first set equal to the largest of

the error indicators for adjacent elements and then interpolated at element centroids

to form the predictors. This algorithm implicitly predicts the need for grid refine-

ment near elements where large errors have been detected and spreads the effect of

estimated errors by one or two elements, thus preventing holes in subsequent grids.

Applying A Priori Grid Refinement Controls

For accurate and efficient analyses of complex configurations, it is important that

one is permitted to communicate regions of greatest and least interest to a solution

adaptive grid code. In many cases this is essential so that flow features of interest can
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be resolved most accurately with a given target number of elements. The reasons for

this are as follows. Unless otherwise instructed, the solution adaptive grid method

gives equal weight to all regions with equal estimated errors in considering local grid

refinement. Such regions could include those about wing tips, leading edges of many

components in a configuration, irregularities in geometry, and wake regions, not all

of which may be of equal importance to a person using the code. It can also happen

that one flow feature that is easily detectable may dominate another flow feature that

is latent (a feature that cannot be detected until sufficiently fine grid is present). For

a given target number of elements, one often can significantly enhance the detection

and resolution of latent flow features by restricting or de-emphasizing grid refinement

in regions with dominant features.

The mechanism for exercising such a priori grid refinement controls in the solution

adaptive grid method is the use of the same hexahedral shaped special boxes of interest

(LBOs) used in constructing the initial fine grid (see Section 2.3). With each LBO,

one specifies trilinearly varying minimum and maximum local grid sizes allowed in the

LBO and a weight used to scale the corresponding local error predictors. The results

of applying these controls in the method are an element refinement/derefinement

eligibility list, a list of elements whose sizes are above specified maximum values, and

a list of scaled error predictors ordered by size.

Applying Grid Refinement Strategy

In this step the elements are either marked for refinement, derefinement, or to be

retained unchanged. Of the elements eligible for refinement, those with the largest

scaled error predictors are marked for subdivision, with elements having grid sizes

above specified maximum values taking precedence. Of the elements eligible for dere-

finement, those with the smallest scaled predictors are marked for derefinement (if all

eight sibling elements are so eligible). The decisions regarding how many elements to

refine and how many to derefine depend on a grid refinement strategy.

In examining strategies for deciding how many elements of each type to mark,

two principles have proven useful. First, direct control should be exercised over the

rates at which numbers of elements in successive grids increase. This excludes, for

example, a prevalent strategy that refines/derefines solely on the basis of cut-off values

which are proportional to the current mean local error indicator. Direct control is

important because problem size can increase very rapidly with grid refinement in

three dimensions. Second, for early and intermediate grids, grid refinement should be

limited in regions where dominant flow features have been detected and be forced to

occur in other regions. Failure to adhere to this principle can allow some flow features

(e.g., leading edge expansions) to attract all available grid before other important

features (e.g., shocks) develop.

A simple and flexible strategy following these principles is incorporated in the

present method. It consists of

• refining and derefining fixed percentages of elements for most coarse and inter-

mediate grids,
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* attempting to moreequally distribute local errorswithout significantly changing
the number of elementsin an intermediate grid, and

• only refining on the last grid.

More specifically (using a particular choice of input parameters for the method), with

given intermediate and final target numbers of elements Nt and NF, respectively, and

N denoting the number of elements in the current grid such that NI < NF < 4NI,

and N < Nt

if N < .4Nt, 20% of the elements are marked for refinement and up to 40% for

derefinement;

if .4NI < N < .9N1, only refinement is used to increase the number of elements to

about Nt; and

if N is approximately equal to Nt, 2% of the elements are refined and up to 20%

are derefined, and the next (final) grid adaptation consists of (only) refining enough

elements so that the final grid has about NF elements.

It is noted that the implementation of this and related grid refinement strategies

consists of "solution adaptive grid cycles", where in each cycle, input consists of a

target number of elements and various control parameters, and one or more adaptive

grids are constructed. In the specific strategy described above, three cycles are used

with target numbers of elements equal to Nt, Nx and NF, respectively. In the second

cycle only one adaptive grid is constructed.

Constructing a New Grid

Using a list of marked elements and a grid legalization constraint, a grid is constructed

by building a new oct-tree structure. The legalization constraint, (see Appendix A),

requires that additional elements be marked for refinement, if necessary, in order to

prevent face-neighbor and edge-neighbor elements in the resulting grid from differing

by more than one refinement level. In the newly constructed grid, the uniform global

grid is expanded on the inflow or outer boundaries whenever a global grid box in the

previous grid on the respective boundary is marked for refinement. Since linear flow

assumptions are used on all inflow and outer boundary grid boxes, expansion of the

grid (and problem domain) occurs whenever significant nonlinear effects are present
in the flow near these boundaries.

Figure 2.19 illustrates the types of grids created in an application of the solution

adaptive grid method. Pictured there are cuts of the initial grid and the second and

fourth adaptive grids in a run.
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2.5 POSTPROCESSING

A finite element postprocessing capability has been implemented to smooth out irreg-

ularities in surface pressure distributions [69, 70]. The irregularities in the pressure

distribution are illustrated in Figure 2.20 and arise due to the fact that the trilinear

functions used to approximate the potential lead to essentially constant velocity in a

given box. If more that one panel corner point is located in a given grid box then the

pressure at these points (calculated from the velocity using the isentropic formula)

also appears to be essentially constant.

To eliminate this apparent anomaly, a velocity i7 is computed for each unknown

(I) or @, located at a grid point using the following procedure.

• All regions influenced by the unknown are found.

• At the spatial location of the unknown the velocity basis functions of these

regions are evaluated.

m

• V is given by the average of these velocity vectors.

To evaluate the velocity at any point in space, the region containing the point is

found and the velocity components at the eight corner unknowns of the region are

trilinearly interpolated.

For the sphere, the surface pressure is shown with and without the postprocessing

step outlined above in Figure 2.20 for a linear flow case and a transonic case . The

effect of post processing is evident.
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2.6 SUPERSONIC FREE STREAM FORMULA-

TION

The grid generation, discretization, and dissipation used to solve problems in super-

sonic free stream are essentially identical to that used in the problems in subsonic

free stream. However, due to the difference in the character of the full potential equa-

tion in supersonic flow there are certain differences in the way the far field boundary

conditions are imposed and the discrete equations are solved.

2.6.1 Far Field Treatment

The same governing equation is applicable in supersonic free stream flow. However the

far field behavior of the flow is different from that in subsonic free stream flow. The

source parameterization (Section 2.3.2) cannot be employed in the case of supersonic

free stream flow. The Poisson solver constructed for the Prandtl Glauert equation

(Appendix D) is no longer valid. Instead other types of boundary conditions are

applied at the outer boundary of the computational domain.

Due to the hyperbolic nature of the flow initial conditions are required at the

inflow boundaries (typically the upstream boundary). Since in supersonic flow the

configuration has no upstream influence, the appropriate boundary condition is that

the perturbation potential there be zero. In implementing this boundary conditions

the perturbation is forced to be zero at two upstream planes of the global grid.

At the outflow boundaries of the computational domain no boundary conditions

are required in principle, because the solution can be obtained in a marching process.

However, since the present method uses a sparse solver on a reduced set that includes

all the unknowns in the field it is essential to impose some boundary conditions that

do not feed their influence upstream. In this case a ¢** = 0 boundary condition is

imposed at the downstream boundary.

On the side boundaries the initial conditions at the upstream boundary and the

_bx, boundary conditions imply that the perturbation potential at the side boundaries
also be zero.

It is noted that the imposition of these conditions on the outer boundary of the grid

may cause shock reflections which could influence downstream portions of the flow

field, particularly at low supersonic free stream Mach numbers when the Mach cone

angles are large. A better approach would be to assume supersonic linear flow outside

the computational grid and impose a conical flow condition at the outer boundary.

This has not yet been implemented.

2.6.2 Solution of Discrete Equations

As mentioned earlier, all equations are included in the sparse matrix preconditioner,

including the equations corresponding to the global grid points away from regions of

local grid refinement and away from the configuration surface. To take advantage of

the hyperbolic nature of the flow, the equations in the sparse solver are ordered by
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ificreasing x coordinate value, rather than by nested dissection. The system is solved

by the nonlinear GMRES procedure exactly as is done in the subsonic free stream
ca-qe.

For the supersonic free stream case, the convergence of the linear problem in

the Newton method is essentially the same as in the subsonic free stream cases.

The non-linear Newton iterations converge better with grid sequencing and viscosity

damping. However, on occasion supersonic free stream cases have been observed to

"stagnate" for a few cycles before converging further. In addition, when using solution

adaptive gridding, it has been observed that more robust convergence behavior occurs

if viscosity damping is used on each successive grid. This requires more iterations

on the finer grids before turning off the extra viscosity, but provides more reliable

convergence.

The solution adaptive grid features of TRANAIR are the same in supersonic free

stream flow as in subsonic free stream flows. Normal shocks and expansion regions

are easily detected and grid is generated to resolve gradients. When the shocks are

oblique, it takes more cycles of solution adaptivity to begin to detect their presence.

Figures 2.21 through 2.24 illustrate a sequence of grids generated about a sphere-cone

configuration.

1
I
I

Ill
Ill

I11
III

.!
I

Figure 2.21: Solution Adaptive Grid (No. 1) for the Supersonic Cone

The early solution adaptive grid refinements concentrate on the gradients in the

expansion region near the upstream stagnation point on the spherical face. Three

cycles of solution adaptation were required to get errors in the stagnation region

reduced sufficiently so that the bow shock was well-recognized. After five cycles of

grid refinement the bow shock is clearly developed up to the point where it becomes

quite oblique. At that point, the grid is too coarse to sufficiently resolve the oblique

shock and it diffuses badly. The relative distribution of the computed local error

estimates indicates that the next cycles of solution adaptive refinement will better

resolve the oblique portions of the bow shock, but it is clear that it is desirable to
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Figure 2.24: Solution Adaptive Grid (No. 5) for the Supersonic Cone

modify the solution adaptive grid strategy in a way to allow it to detect oblique shocks

earlier in the solution adaptive gridding cycles.
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2.7 PROGRAMMING CONSIDERATIONS

The numerical method incorporated in TRANAIR has many algorithms. In imple-

menting these algorithms a significant amount of effort was spent ensuring that these

algorithms make efficient use of vector supercomputer hardware features. Since no

assumptions were made regarding availability of machines with extremely large cen-

tral memory, the code was designed to use out-of-core storage, e.g., the Cray SSD.

(TRANAIR also can be easily modified for in-core applications.) This also required

that special attention be paid to memory management and input/output issues. Data

structures are of paramount importance to any application code and TRANAIR is

no exception. Due to the unstructured nature of the grid and large amount of data

to be handled, TRANAIR uses some unique data structures. Finally, it is also worth

noting that the code has been developed by a team of people. To facilitate team work

and minimize maintenance problems, "black box" (modular) coding was used where

possible, leading to a large collection of library routines performing various standard
functions.

In the following these issues are discussed in some detail. No attempt is made to

provide a complete list of subroutines nor to discuss any specific algorithm at great

length. The purpose of this section is to set forth ideas that have gone into building

the modules that make up the TRANAIR code.

2.7.1 Memory Management

To maximize the size of the problem that can be solved with a given amount of

memory it is imperative that the available central memory be used efficiently. This

issue becomes especially important when many programmers are involved in coding

different modules and need to access the same memory locations.

To resolve this issue, a self contained memory management system was developed.

Most of the memory space used in the code is contained in a single large one di-

mensional scratch array. This array is divided into smaller arrays as needed in any

subroutine. The remaining portion of the big array is passed down through the call-

ing sequence of any subroutine needing further scratch space. The latter routine can

then further subdivide the array as needed. The subdivision is hierarchical and is

implemented using several FORTRAN subroutines. When storage for an array is re-

quested, an identifier and the length of the array are supplied. A pointer to the array

is returned. This allows reference to the array even after "garbage collection" (defined

below). Array storage is freed when no longer needed. When storage for an array is

requested, if possible, a consecutive block of storage is found and allocated. However,

if storage for many arrays have been allocated and de-allocated the available storage

may be fragmented with no sufficiently long consecutive block of storage in the big

scratch array. In this case, storage in the scratch array is garbage collected, i.e., all

allocated array storage is moved to the front of the scratch array (the pointers are

changed) leaving a contiguous block of available storage at the back. If this block is

still not large enough, the program will abort. The simple remedy then is to increase

the dimension of the main scratch array.
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2.7.2 Input/Output

TRANAIR uses a centralized I/O system for temporary files. The temporary files

are typically used to store data so that central memory can be freed for some other

purpose. The data stored on such files includes that for the oct-tree data structure,

the boundary operators, the GMRES search directions, and the decomposition of the

Jacobian matrix used as a preconditioner. These files are made to reside on the SSD,

the disk, or in central memory if available. For most purposes these files are treated

as temporary files that are generally lost at the end of program execution.

Data I/O is carried out through special routines. Some of the bigger datasets

are written using unblocked FORTRAN I/O. The datasets are accessed using unit

numbers which are determined and stored within the program. When the dataset

under question has outlived its utility the unit can be closed, thus freeing it for other

use as needed. This process is automatic.

A good example of I/O usage is the residual computation procedure. The residual

calculation requires the potential at unknown locations (nodes) and density at the

centroids of regions. In addition, quantities such as the velocity, switching function,

etc. are also required at region centroids. If all these quantities could be held in core

at one time the computation of residuals would indeed be extremely fast. However,

since the available central memory on many Cray computers is small, some of the data

is blocked and stored on a mass storage device and computations are performed one

block at a time. The field quantities (those defined at the nodes) are held in core as

fields and the region based quantities are blocked and brought into central memory as

the computations proceed. The I/O required in these operations is performed using

the central I/O system.

In the case of subsonic flow, two passes through the "blocks" are necessary to

compute residuals. First, with the array of potential values at unknown locations

stored in core, velocity operators and corner unknown indices are brought into core

a block at a time. For each block, velocity components at element centroids and

hence densities are computed and stored, before considering the next block. This

step easily can be vectorized with vector length equal to the length of the block.

Second, with arrays of potential and residual values in core, divergence operators,

densities at centroids and corner unknown indices are brought into core a block at a

time and used to scatter contributions to residuals at the corners.

Other examples of blocking are found in generating and decomposing the sparse

solver matrix (see Appendix E).

2.7.3 Vectorization Issues

The locally refined structure of the computational grid and the need to achieve good

performance on vector machines makes many aspects of the coding more complex.

The fundamental change from the basic structure of a uniform Cartesian grid code

[39] and many logically rectangular body fitted grid codes is that many of the opera-

tions involve indezed (indirectly addressed) arrays, i.e., in many instances, instead of

directly addressed vector operations such as
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X(I) - X(I) + C * Y(I),

vector operations are required of the form

X(I) - X(I) ÷ C * Y(IND(I))

or

X(IND(I)) - X(IND(I)) + C * Y(I).

With recent Cray compilers it is possible to vectorize loops with such operations

when no vector dependencies exist. Through use of careful coding to avoid the need

for many double-indexed arrays, e.g., arrays of the form Y(INDI(IND2(I))), such

operations in TRANAIR have been made to execute at high rates (typically at a third

to a half of the peak rate possible with direct addressed arrays). Much use of this

is made in the sparse matrix decomposition and forward and backward substitution

phases (see Appendix E).

The residual computation also uses indexed operations. As described in Section 2.4

and Appendix B, finite element operators and velocity operators are computed for

each element. These operators depend only on the geometry of the element. When

the element is in a box not cut by a boundary, only the grid refinement level (relative

to the global grid) of the box is needed to define the operator. D-region operators are

computed and stored out-of-core. In order to apply such an operator it is necessary to

know the indices of unknowns located at all eight corners of the element. Because of

local grid refinement, these corner unknowns are not stored in a contiguous manner,

thus making the resulting operations indexed.

The residual calculations consist of two phases: gathering information for each

region and scattering information from the regions to the corner nodes. In the first

phase, velocity, density and switching function values are computed at the centroids of

every region. At the ith region centroid, the density pi is obtained from the magnitude

of velocity, the kth component of which is computed via

8

v,*= (2.sl)
j=l

where @ ispotential, Vi_ is the operator coefficient giving the contribution to the kth

velocity component at the centroid of the ith region from the jth corner unknown of

the region, and IRU(i, j) is the index of the jth corner unknown of the ith region. The

coefficients Vi_ for D-regions are stored out-of-core. While @ is held in core, velocity

components are computed for a block of regions at a time. By ordering elements

not cut by boundaries (standard regions) in separate blocks, each block consisting

of regions at the same level of grid refinement, the FORTRAN loop implementing

Eq. (2.61) involves single-indexed arrays and executes at a rate approaching 100

megaflops on a single-processor Cray X-MP (having 9.5 nanosecond cycle time).

When some or all of the regions have supersonic flow, an extra step in the first

phase of the residual calculation is necessary for each block to incorporate upwinding

effects. The upwinded density, t3, in region number it is given by
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S 4

= + p.), (2.62)
if=l ir=l

where {C_t._1.,,} are the operator coefficients and {IBB(it, if, ir)} are the indices of

regions adjacent (viz. index Jr) to region number it across element face number if.

The symbol p in Eq. (2.62) denotes the switching function and SF is a blending

function (see Eq. (2.43)). In these equations the doublet parameters have been omit-

ted for simpLicity. The calculation of region centroid values of _ is done by blocks

of regions, as was described above for values of p, with • stored in core. The FOR-

TRAN loop implementing Eq. (2.62) is over all supersonic regions in a block (i.e.,

over block regions on which p is greater than zero). In the loop, the region number

it of Eq. (2.62) is obtained via it = IND(I), where I is the loop counter ranging

from one to the number of supersonic regions in the block. This means the array

IBB = IBB(IND(I),., .) is an indexed array, and, consequently, the FORTRAN ar-

ray representing PIBB(it,if,_,) of Eq. (2.62) is double-indexed. The peak execution rate

for this FORTRAN loop on a single-processor Cray X-MP (having 9.5 nanosecond

cycle time) is about 50 megaflops. However, the work done in this loop accounts for

an insignificant portion of the total work done in an application.

In the second phase of the residual calculation, the region-centered quantities ob-

tained in the first phase are used to compute the residuals associated with the nodal

solution unknowns. This phase is the dominant cost in the residual calculation and so

efficiency is very important. The residual R_ for the lth solution unknown is obtained

via

8 8

R_= _ p,_Diji_(InU(i,j))+ _ (_,-pi)_D,jt_(InU(i,j)) (2.63)
region i jr1 region i j=l

where D_jt is the finite element divergence operator coefficient contribution to the lth

unknown for the ith region from the unknown at corner j. The FORTRAN imple-

mentation of Eq. (2.63) uses two nested loops, reversing the order of the summations

so that the outer loop is over the eight corner unknowns and the inner (vectorizable)

loop is over the elements of the block. Vectorization is possible because for any outer

loop index j, the jth corners of all the regions in the block are distinct, and so no

vector dependency occurs. This would not be true for an arbitrary block of D-regions,

but in TRANAIR, the corners are made distinct within a block by separating possible

duplicates into different blocks.

Careful design of these algorithms was necessary to minimize storage, allow effec-

tive use of the Cray SSD, and a_hieve reasonable CPU speed.

2.7.4 Data Structures

TRANAIR uses a number of different data structures to faciLitate compact and effi-

cient usage of data. A prime example is the oct-tree data structure discussed at length

in Appendix A. Among the other data structures used are the region-unknown lists,

box-neighbor lists, operators, etc.
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2.7.5 Program Libraries

Wherever possible "black box" (modular) coding has been used to increase flexibility.

An example of "black box" coding is the nonlinear GMRES routine which sees the

entire residual evaluation process as an arbitrary function to be calculated. The

code is built up from a set of hbraries containing groups of subroutines which can be

classified together. These consist of libraries for:

• input processor

• solver

• output processor

• special purpose mathematical routines

• sparse solver

• Green's function

• general purpose utility routines

• general purpose mathematical routines

• abutment processor

• fluid dynamics routines
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Chapter 3

RESULTS

Many results of applying TRANAIR are presented in this chapter. These results

demonstrate the ability of the code to handle general geometry configurations in

subsonic and supersonic free stream, the reliability with which these solutions can be

obtained, and the flexibility of the code in allowing modeling of various flow features

such as leading edge expansions, weak normal shocks, oblique shocks, and regions

with different total temperatures and pressures. The example results are divided into

three groups according to flow type.

The first consists of cases in subsonic free stream governed by the linear Prandtl-

Glauert equation. These cases are presented primarily for the purpose of comparing

results with those of panel methods and analytic solutions where available. Neither

Newton method damping nor grid sequencing is required in these cases. In each

TRANAIR run, a single grid was constructed based on user specifications.

The second group consists of cases in subsonic free stream where it is necessary

to solve the full potential equation because the flow characteristics are nonlinear and

possibly transonic. Results are presented for TRANAIR runs that employed single

grids, grid sequencing, and solution adaptive grids.

The third group consists of cases in supersonic free stream where again the solution

of the full potential equation is necessary. The flow is predominantly hyperbolic in

character. Subsonic regions and transonic flow characteristics are present in some

cases. Solution adaptive grids were employed in all the runs in this group.

The r_sults presented in this chapter have been obtained over a period of two

years. Where possible the results obtained from the most recent versions of the code

are presented. In every case the result can be repeated to the same or improved

accuracy with the most recent version of the code.

In all cases presented in this paper, the solution (primarily represented by static

pressure) is displayed at panel corner points. The static pressure is generally repre-

sented by its non-dimensional counterpart defined as

Cp P-P (3.1)
1 2
$P_oqoo

where p is local pressure, poo, poo, and qoo are the free stream density, local pressure,

and velocity magnitude.

lt_NrlOll _rJ
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The results presented here are obtained on the Cray X-MP machine with up to

4MW of central memory and up to 128 MW of SSD storage or the Cray Y-MP.

3.1 RESULTS FOR LINEAR FLOW

In this section, linear flow solutions are discussed. Results for a sphere, the ONERA

M6 wing, and the F16 fighter aircraft configuration are presented.

3.1.1 Sphere

For the sphere in incompressible flow, an analytic solution is available. This is a

nontrivial problem for a Cartesian grid method since the surface intersects the grid in

many different ways. A sphere with radius 0.8 was analyzed at Moo = 0 and a = 0.0 °.

Four grids were used to test the accuracy of TRANAIR. In Figure 3.1 the paneling

used to describe the sphere surface in the coarse and medium grid cases is shown

(there are 1600 panels describing the geometry of the half sphere using one plane

of symmetry). With the fine and uniform grids, the paneling was doubled in each

direction. Planar cuts through the four grids are shown in Figure 3.2. The uniform

grid had 123,680 elements. It is noted that the outer boundary of the computational

domain in the uniform grid case is very close to the boundary. The coarse, medium,

and fine grids shown have 10356, 35456, and 149,515 elements respectively. Stagnation

regions (those totally inside the sphere) are not included in the element totals. These

cases were run with one plane of symmetry. Only half of each cut is shown since each

cut is symmetric about a second plane of symmetry.

In Figure 3.3 the surface pressure I for the sphere is plotted as a function of x. Also

shown is the corresponding analytic solution. Data at all circumferential stations

are plotted. For the 1600 panel case, there are 20 stations at each x value. The

scatter of surface pressure ata constant x coordinate is due to the use of Cartesian

grid and provides a good measure of the overall accuracy. The solution accuracy

improves significantly as the grid is refined. The expected quadratic convergence rate

in potential as the grid is refined has been verified earlier [36] in this case.

1In all the subsequent discussion the term surface pressure is used to indicate the pressure
coefficient
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Figure 3.1: Paneling Used for Sphere in Linear Flow, 1600 Panels.
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3.1.2 ONERA M6 Wing

An ONERA M6 wing is analyzed at Moo = 0 and angle of attack a = 3.06 °. The

boundary is described by 1800 panels (see Figure 3.6). The panels have a very high

aspect ratio, being much longer in the spanwise direction than in the chordwise di-

rection. This paneling is adequate for a solution in linear flow because the solution

also changes more rapidly in the chordwise direction than in the spanwise direction.

TRANAIR was run on a coarse grid having 35,188 elements and a fine grid having

249,305 elements. Vertical cuts through the two grids at the plane of symmetry are

shown in Figure 3.4. Figure 3.5 shows a waterline cut through the coarser grid. The

clustering of fine grid cells at the leading and trailing edges is necessary to resolve

high velocity gradients.

Figure 3.6 compares surface pressure at the 20% span station with a solution

obtained with a panel method. Note that the fine grid TRANAIR solution agrees

well with the panel method solution. The leading edge is enlarged in the third plot.

Figure 3.7 shows two other stations from these same solutions.
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Figure 3.5: Waterline Cut Through ONERA M6 Coarse Grid.
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3.1.3 F16 Fighter Aircraft

An F16 fighter aircraft configuration shown in Figure 3.8 was analyzed at M_ = 0.6

and a = 4.0 °. The configuration has 3510 panels. The TRANAIR run had 162,850

elements. Figure 3.9 compares surface pressure on the wing at two stations with those

obtained using a panel method.

Figure 3.8:F16 Aircraft Configuration.

73



X

340 3_0 380 400

X

33% Span 75% Span

Panel Method o TRANAIR

Figure 3.9: Surface Pressure at Two Stations on the F16 Wing, M_¢ = 0.6, a = 4.0 °.

74



3.2 RESULTS FOR NONLINEAR FLOW

To demonstrate the nonlinear capabilities of the method, solutions for a wide variety

of three dimensional configurations are presented. These include complex fighter and

transport configurations as well as the geometries used in Section 3.1 above for linear
lqOW.

3.2.1 Sphere

A sphere with radius 0.8 is analyzed at Mo_ = 0.7. At this condition, the flow is

transonic and contains a strong shock. This case was used to test the effectiveness of

the upwinding used in TRANAIR. A fine grid was used to test the accuracy of the

TRANAIR discretization. The grid contained about 170,000 elements and two planes

of symmetry were used to reduce the size of the problem. A cut through this grid is

shown in Figure 3.10.

Figure 3.11 shows the convergence history for this case with grid sequencing and

with viscosity damping described in the previous section. Five continuation steps

were needed to achieve convergence with viscosity damping in this case. Significant

step size damping was required for the first viscous problem. No step size damping

was needed with grid sequencing. There is no significant difference in the aerodynamic

solution obtained via viscosity damping or grid sequencing.

Figure 3.12 shows surface Mach numbers as a function of x. Values at all circum-

ferential stations are plotted. Because of the symmetry of the geometry and lack of

angle of attack the solution should be axially symmetric. The TRANAIR solution is

quite symmetric and also captures the well known re-expansion phenomenon at the

foot of the shock. Post processing described in Section 2.5 was used.
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Figure 3.10: Cut Through the Grid for a Sphere in Transonic Flow, Moo = 0.7.
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3.2.2 ONERA M6 Wing

The ONERA M6 wing was analyzed at M_ = 0.84 and c_ = 3.06 ° using grid sequenc-

ing. This a very popular test case for transonic flow codes and exhibits an oblique

(supersonic to supersonic) shock as well as a normal (supersonic to subsonic) shock.

Moreover, there is a fairly complicated shock pattern on the planform of the wing.

Unless otherwise mentioned all the results in this sections were obtained using post

processing.

The TRANAIR results are compared to those obtained using the FLO28 code of

Jameson [34]. The surface geometry used in the two solutions is identical. FLO28

solves the full potential equation using a surface fitted grid and is particularly well

suited to simple wing geometries such as the ONERA M6 wing. The TRANAIR

solution is obtained using a grid with about 311,000 elements whereas the FLO28

code solution was obtained on a grid with 364,000 cells. Dense grids were used in

both codes to accurately capture the oblique shock. In Figure 3.13 two vertical cuts

through the TRANAIR grid for this case are shown. Figure 3.14 is a waterline cut

through the grid.

Figure 3.15 compares surface pressures at four stations with those obtained with

FLO28. The TRANAIR solution was obtained using flux biasing and post processing.

It is unclear in this case whether the second order dissipation FLO28 solution offers

improved accuracy. In this problem, TRANAIR obtained comparable accuracy at

comparable cost.

The ONERA M6 wing case was also analyzed using the solution adaptive grid

feature. The initial grid had about 15,000 box elements. Intermediate and final target

numbers of elements were specified as Nl = 300,000 and NF = 440,000, respectively.

A level limiting strategy was employed for the intermediate grids. The maximum

level of refinement throughout the flow field was specified to be 4 levels below the

global grid in all but the finest grid. In the finest grid 5 levels of refinement were

permitted. One special regiori of interest was used to prevent refinement more than

one level below the global grid in the tip region. No scaling of local error predictors

was done.

In the resulting adaptive grid run, 6 grids were created. These contained approxi-

mately 39,000, 86,000, 184, 000, 286,000, 312,000 and 423,000 elements. Figure 3.16

shows 70e_ span station cuts through the initial grid and final adaptive grid. Cuts

through the final adaptive grid at 0% and 44% span are shown in figure 3.17.

Figure 3.18 displays computed pressure coefficients against percentage wing chord

at 0% and 70% span for the initial grid, the second adaptive grid and the final

adaptive grid. These results are generally quite accurate. One notices, however, that

the oblique shock present on the wing at about 25% chord on the 70% span station

is smeared. The oblique shock is a relatively weak phenomenon in this problem that

can only be detected once a very fine grid is present.
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Figure 3.19: Wing Pressures for the F16, M¢_ = 0.9, a = 4.0 °.

3.2.3 F16 Fighter Aircraft

The F16 shown in Figure 3.8 was analyzed at M_ = 0.9 and a = 4.0 °. The TRANAIR

grid had about 189,000 elements. A comparison of computed surface pressure with

wind tunnel data at two wing stations is shown in Figure 3.19. The agreement is good

considering the fact that boundary layer effects are not yet included in TRANAIR.

Another configuration of interest is the F16 with tanks and missiles shown in Figure

1.2. This is a very difficult case for surface fitted grid codes. The finest TRANAIR

grid in this grid sequencing run contained about 216,000 elements. Figure 3.20 shows

three plane cuts through the computational grid. Figure 3.21 compares computed

surface pressure just inboard and just outboard of the tank strut with TRANAIR

results for the F16 without tanks and missiles. The effect of the tank is as expected.

The F16 fighter with tanks and missiles was also analyzed using the solution adap-

tive method. This case involves extremely complex geometry leading to some very

severe flow regions which provides a tough case for solution adaptive refinement. In

the run a starting grid with 8,224 boxes (a global grid 33 x 9 x 13 with a maximum

of 3 levels of panel induced refinement) was used.

It was assumed that the region of primary interest was the wing/tank. Also the

major features of the flow about the fuselage should be captured. Earlier test runs

indicated several regions where developing high flow gradients necessitated restriction

of refinement. In the wake region behind the missile, refinement was restricted to one
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level, also refinement was restricted to four levelson the fuselageand on the tank.
A strong error indicator de-emphasiswasnecessaryin the rear of the fuselageasfine
grid in the cut-out region leads to very high flow gradients (and hence more grid

refinement.)

Three adaptive grids were used, generating grids with 25814, 82492 and 256667

boxes. The final grid has a maximum of six levels of grid refinement, found at the

wing leading edge. Fourth- and fifth-level grid is found in the shock regions, strut and

tail leading edge, missile and the front of the fuselage. Fig. 3.22 shows cuts through

the grid at y = 0 (plane of symmetry) , y = 72 (tank-strut location) and z = 94

(waterline cut through the wing).

Fig. 3.23 shows Cp at y = 72 (inboard side of the strut), and along the crown line

of the front of the fuselage (the grid is shown in fig. 3.22). It is worth noting that

when using adaptive refinement extra care must be taken with geometry definition.

Figure. 3.24 shows the grid cut at y = 48 with an enlargement in the strake area. A

small depression in the surface geometry is picked up by the error estimator and the

grid is refined there to the maximum level.
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3.2.4 Boeing 747-200

TRANAIR was used to analyze the flow about a 747-200 transport at M_ = 0.8 and

a = 2.7 °. For this case, M_ = 0.8 is approximately the largest free stream Mach

number at which an inviscid solver can obtain accurate results. The configuration

included wing, body, struts and nacelles. Over 20,000 panels were used to describe

the surface geometry of the symmetric model (see Figure 3.25).

The finest grid used in the grid sequencing run for this case consisted of approx-

imately 219,000 finite elements. Figure 3.26 shows two cuts through the grid. The

cut shown in Figure 3.26A is a yz plane cut and passes through the outboard nacelle

strut and core cowl and through the prescribed wakes behind the inboard strut and

nacelle. The cut shown in Figure 3.26B is an xz plane cut through the outboard

nacelle.

Figure 3.27 compares TRANAIR results with wind tunnel pressure data at four

span stations of the wing. Overall, one sees very good agreement with experiment.
Most of the differences are seen in the upper surface pressures and are attributable

to viscous boundary layer effects not currently modeled in TRANAIR. By comparing

lower surface pressure profiles, one can clearly see the effect of the outboard nacelle

at the 69% span station, which is shown in Figure 3.26B. The very high speed local

flow near the leading edge on the upper surface at this span station is due to the

presence of a strut cap connected to the outboard strut and wing leading edge.

The same case was also analyzed using the adaptive method. In applying the

solution adaptive grid method an initial grid containing about 26,000 elements was

used. The specified intermediate and target numbers of box elements were 125,000

and 250,000, respectively. Three special regions of interest were specified to guide

the adaptive grid method. These included one about the wing tip, one under the

wing enclosing the nacelles, and one above the wing. Four levels of refinement were

permitted for all elements except in the special region of interest above the wing.

There, 4 to 6 levels were permitted from the body to the wing tip in all grids except

the final grid, for which 5 to 7 levels of refinement were permitted. Since wind tunnel

test data for comparison were only available on the wing, the importance of this

region was (further) emphasized by specifying a scaling factor of 8 for the local error

predictors in the special region of interest containing the wing. A scaling factor of 2

was used .in the special region of interest containing the nacelles. Predictors in other

regions were not scaled.

Four grids were created in a run with the solution adaptive grid method. These

contained approximately 58,000,123,000, 133,000 and 243,000 elements. Figure 3.28

shows 69% and 96% wing span station cuts through the initial grid and final adaptive

grid. Figure 3.29 compares computed wing pressures with wind tunnel test data at

four wing span stations. The method yielded results that compare favorably with the

wind tunnel experimental data. In this case, the solution was actually computed at

69% span, resulting in an apparent difference from the results in Fig. 3.27 in which

interpolation to 69% was performed.
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3.2.5 Axisymmetric Nacelle with Powered Plume

The next case illustrates the capability of the TRANAIR code to model different

total pressure in an axisymmetric nacelle for which static test data is available [71].

The total pressure ratio in the powered stream was 2.807 and that in the primary

stream was 2.3425. This configuration is shown in Figure 3.30 and had about 5000

panels. The wakes were paneled so that the powered streams maintain equal area

downstream from the exits. Two planes of symmetry were used for this case. Results

are shown for the final grid with about 85983 elements. Five grids were used in this

grid sequencing run with 539, 880, 2828, 16030, and 85983 elements. Figure 3.31

gives the convergence history for this case. The steps on the coarser grids are scaled

by the number of elements in the grid.

The static pressure on the core cowl is compared with experimental data and with

the results of running a Navier-Stokes code PARC2D [71, 72] in Figure 3.32. In this

case PARC2D predicted no total pressure loss in the fan stream. Thus, isentropic

modehng can capture the major features of this flow.

3.2.6 Analysis of an Installed Transport with Power Effects

Finally, the analysis of a transport aircraft with installed powered nacelles is pre-

sented. The plumes behind the nacelle are simulated as regions of different total

pressure and temperature. In Figure 3.33a and 3.33b, the paneling for the config-

uration and a typical section of the grid with about 230,000 boxes are shown. In

Figure 3.33c and 3.33d the pressure computed at an underwing station and inboard

strut station with and without power (flight idle (ram) and cruise conditions) are

compared. The effect of power on the local flow is obvious. This case demonstrates

the capabihty of the TRANAIR code to handle power effects, a capability usually

associated with an Euler formulation.
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3.3 RESULTS FOR SUPERSONIC FREE STREAM

FLOW

The supersonic free stream capability has been added to TRANAIR only recently

and has not been exercised as thoroughly as the subsonic free stream capability. The

supersonic free stream capabilities of TRANAIR have been tested on a cone-sphere

configuration (compared with an analytic solution), two delta wing configurations

with supersonic and subsonic leading edges, respectively (compared against a linear

panel code solution and against the SIMP full potential code[73]), and an F16 con-

figuration (comparison with experimental data and with a solution obtained with the

SIMP full potential code). All configurations were analyzed with the solution adap-

tive gridding option of TRANAIR. In addition, to demonstrate the abilities of the

solution adaptive gridding to capture a bow shock, a solution has been obtained on

the reversed cone-sphere configuration - a sphere-cone. Some limited comparisons

have been made with experimental data obtained from some standard textbooks.

3.3.1 Cone-Sphere Configuration.

Figure 3.34 compares the pressure distribution obtained with TRANAIR, with SIMP,

with EMTAC[74], and with the analytic solution for flow over a cone of a 10 degree

half angle. The flow conditions were a free stream Mach number Moo = 1.414 and

a=_=O °.
The radius of the cone at the spherical cap was 1.76327 units. To avoid contamina-

tion of the surface solution by reflections of shocks from the outer faces of the global

grid, the global grid was extended to twelve units normal to the axis of the cone.

The final computational grid generated by TRANAIR is illustrated in Figure 3.35.

Solution adaptation was performed five times. A minimum of one level of refinement

near the boundary and a maximum of three levels was specified for the candidate

initial grid.

Note that the inviscid solution (obtained by TRANAIR, SIMP and EMTAC) pre-

dicts a continued expansion to vacuum on the downstream end of the cone-sphere.

In a real flow, viscous effects would produce separation before the expansion reached

vacuum. The fictitious gas Mach number was raised to 7.0 for this analysis. Even

at this value, the Mach number of the flow expands beyond Mach 15 before shocking

down to stagnation at the aft portion of the sphere. The fictitious gas Mach number

capability of TRANAIR allows it to obtain a solution to this case. It is interesting

to note that with the fictitious gas model, the TRANAIR solution matches the Euler

code solution obtained by EMTAC, rather than the SIMP solution. Because of the

large velocity gradients in the flow field in the aft portion of the cone-sphere, all of

the solution adapted gridding has been attracted to the downstream spherical cap.

The tip "shock" went undetected by the solution adaptive gridding in the sense that

no refinement was produced in the field to capture the tip discontinuity. However,

the surface pressure distribution agrees with the analytic solution, probably because

the tip shock is a weak phenomenon.
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3.3.2 Delta Wing Configurations.

Figure 3.36 compares the spanwise pressure distribution for supersonic free stream

flow past a delta wing with subsonic leading edges with a linear panel solution. The

pressure distribution is illustrated at the 90% chord station. The free stream condi-

tions were Moo = 1.414 and a = /3 = 0 °. The thickness at full chord on the plane

of symmetry was 2% of chord with a linear variation of thickness from the tip to full

chord and in the direction normal to the plane of symmetry. The leading edge of the

wing is swept to an angle of 60 °. Solution adaptive gridding with four cycles of grid

adaptation were performed. Figure 3.37 illustrates representative cuts through the

computational grid.

Figure 3.38 illustrates the pressure distribution on a supersonic leading edge delta

wing. The sweep angle of the subsonic leading edge wing was changed to 30 ° for this

case. The TRANAIR solution agrees with the linear panel code solution up to the

Mach cone emanating from the tip of the delta wing. The linear solution yields a

constant Up in the spanwise distribution, while the TRANAIR solution overshoots,

presumably due to nonlinear effects. It is also possible that additional grid density

might remove the overshoot. Because the flow gradients are relatively mild, some

"hands-on" specification of grid may be required for this case. Figure 3.39 illustrates

several cuts through the computational grid for the final (fourth) solution adapted
grid obtained by the calculation.

3.3.3 F16 Configuration.

Figures 3.40 through 3.45 compare surface pressure distributions on the F16 configu-

ration as predicted by TRANAIR and by SIMP. Figures 3.40 through 3.42 illustrate

top, bottom and side views of the pressure distributions at free stream conditions of

Moo = 1.414 and a = 4 °. Figures 3.43 through 3.45 compare the solutions for free

stream conditions of Moo = 2.0 and ot = 2 °. In general the correlation in the pressure

distributions is quite close. The TRANAIR pressure predictions tend to be smoother

and less jagged. At Moo = 1.414 the SIMP code produced an abnormal feature at

the outboard trailing edge of the wing. This abnormality propagated in an inward

direction toward the tail. When this intersects the configuration at the horizontal

tail, a number of unusual reflections occur, contaminating the SIMP solution. The

origin of this feature is not presently known.

Another significant difference at both Moo = 1.414 and Moo = 2.0 occurs on the

lower surface in the region where the strake and body join. This is attributed to some

differences in the gridding of the surface for SIMP. It was not possible to obtain an

accurate representation of the diverter channel with SIMP and so the surface geometry

was modified in this region. The result downstream of this modification was a more

sudden change in slope in the region under the strake, resulting in a greater degree of

stagnation in this area of the configuration. This is an artifact of the inability of SIMP

to generate a grid which accurately describes the configuration geometry. TRANAIR

accepts the paneled definition of the F16 geometry and hierarchically refines the grid

where required by solution gradients to more accurately model the flow field.
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Figure 3.46 compares the pressure distribution predicted by TRANAIR with wind

tunnel measurements on an F16 configuration with tip missiles at M_ = 1.2 and

a = 4 °. Note that this configuration, (because of the existence of multiply connected

regions in streamwise cuts of the configuration) could not be run in the SIMP code.

Figure 3.47 illustrates some representative cuts of the final computational grid for the

TRANAIR solution. Three cycles of grid adaptation were performed.
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Figure 3.35: Final Computational Grid for Cone-Sphere Configuration.
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Figure 3.43: Cp Distribution on Upper Surface of F16, M_ = 2.0, TRANAIR vs

SIMP.

114



gl,

TRANAIR-SIMP Comparison

O.Oii

Mach -- ;8.0 OL - 2.0

• .j

Lower Surface

Figure 3.44: Cp Distribution on Lower Surface of F16, Moo = 2.0, TRANAIR vs
SIMP.

115



flu
r_

TRANAIR-SIMP

Ill

--O. IS

Comparison

Math - B.O (:It--2.0

SIMP N

Side View

Figure 3.45: Cp Distribution on Side View of F16, M¢0 = 2.0, TRANAIR vs SIMP.

116



Cp

Tm SUeA I (1a5 8en611m_)

eoo •

m4) Iioo 94o MO
X

42O

Op

X

Op

TO Oqmkn $ cJpeq_8_n_mn)

• •

¢p

Tm IIImdm_ 4 _P'1% IleAl 41pu_

.

X X

Cp

TO _ S(e,_ StaY-bin)

Cp

Tie IllOen 4J(IOqk _

X l

Figure 3.46: Cp Distribution on F16 Configuration with Tip Missiles, Moo = 1.2 and

a = 4 °, Comparison of TRANAIR with Test Data.

117



i I
I I
i I

I
i

_.-m m

i

l

I

I I

--,,4---.,-I--

i a--

J ! I

-4-.-.d,.-,.-4

I I I I

I I I !
I I I I

I I I I

I I I I

Figure 3.47: Representative Cuts Through Computational Grid for F16 Configuration

With Tip Missile.

118



3.3.4 Bow Shocks

To test the ability of the solution adaptivity in TRANAIR to capture bow shocks,

the cone sphere configuration was reversed and the case was re-run under the same

free stream conditions. Figures 2.21 through 2.24 illustrate the computational grids

generated by TRANAIR for this configuration. The bow shock is captured up to the

point that the shock becomes oblique. Five cycles of grid adaptation were used to

obtain the solution in Figure 3.48. The early refinements were primarily attracted to

the subsonic region between the configuration surface and the bow shock. After the

third cycle of solution adaptive refinement, the estimated errors in the subsonic region

had been reduced enough so that the error indicators in the bow shock dominate

the refinement process. After five cycles of solution adaptive gridding, the fringes

of the refinement along the bow shock are the only significant areas indicated for

further refinement. Figure 3.48 compares TRANAIR predictions for the location of

the bow shock over a range of Mach numbers from 1.01 to 2.8 with experimental

data published in some standard fluid flow textbooks [75], [76]. TRANAIR predicts

bow shock locations somewhat downstream of the experimental curves, but there is

some significant scatter in the experimental data as indicated by the three positions

derived from shock position data for 0.25", 0.5" and 1.0" spheres.

To test whether the solution adaptivity could detect and capture a bow shock in a

realistic configuration, a TRANAIR analysis was performed on the F16 configuration

with underwing fuel tanks present. Five cycles of solution adaptivity were performed.

Figure 3.49 illustrates the grid generated by TRANAIR for a chordwise cut through

the wing and underwing tank. There is clearly a bubble of subsonic flow both in front

of the underwing tank and in front of the strut supporting the tank. The solution

adaptive gridding has clearly detected the bow shock and resolved it up to the sonic

point, where the bow shock weakens and becomes oblique. This behavior is very

similar to that observed for the sphere-cone.
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3.3.5 General Observations.

For supersonic free stream flows, particularly in the case of supersonic leading edges,

surface pressure peaks at leading edges tend to be suppressed, compared to subsonic

free stream cases or to subsonic leading edges. In addition the surface pressure dis-

tributions tend to be flatter and and have smoother gradients. On account of this

it is possible to obtain solutions for supersonic free streams using somewhat smaller

computational grids than for subsonic free streams. Many of the results obtained

in this section used fewer than 100,000 boxes in the entire grid. However, in super-

sonic free stream flows, aft-facing portions of the configuration can easily generate

very large gradients and tend to attract a disproportionate degree of refined grid. In

addition, whenever a bow shock is present, the velocity gradients become very large

in the region between the bow shock and the configuration surface. This also tends

to attract grid refinement in preference over the field discontinuity itself, particularly

when the shocks become oblique. It is quite possible to capture bow shocks with

the current solution adaptive gridding in TRANAIR, but a larger number of cycles

of solution adaptivity or some extra guidance by the user is advisable to make sure

that the grid refinement goes into regions of more importance to the application. As

an extreme, but very realistic example: left to its own preferences, TRANAIR would

refine the cutout regions of the F16, particularly the cutouts near the horizontal tail,

in preference to any other portion of the configuration. In the present state of the

code, it is recommended that, for supersonic free stream flows, some initial analyses

be performed on fairly coarse grids (up to 100,000 boxes, and three to four cycles

of solution adaptivity). After these results are obtained, the solution and grid can

be examined (for example, by using the TGRAF program, described in Appendix B

of the User's manual), and appropriate user directives concerning regions for extra

emphasis and de-emphasis can be defined.
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Chapter 4

FUTURE DIRECTIONS

The ultimate goal of this work is to offer designers a reliable, general purpose, full con-

figuration flow analysis tool. For this purpose we have preferred to start with a reason-

ably simple nonlinear physical model (the full potential equation) where we are certain

that such an objective can be met. At this time we have implemented an approach

to solving the full potential equation into a computer code called TRANAIR. Results

obtained from this code on a variety of configurations have shown that TRANAIR

is capable of achieving this ultimate goal. In fact TRANAIR is currently being used

successfully by many engineers[49], [50], [82] to analyze complex configurations.

However, TRANAIR is by no means a finished product. First, a variety of im-

provements must be made before TRANAIR can really be thought of as a reliable,

general user tool. Second, should these improvements be made, the next order of

business would be to enlarge the scope of problems addressed by TRANAIR. Cur-

rently TRANAIR allows regions of differing total temperature and pressure, which

is important for simulating propulsion effects. An additional capability which would

be desirable is the capturing of vortex, or wake sheets. In theory this can be done

within the framework of a full potential approach. (However, it can be argued that

a method which allows differing total pressures and temperatures as well as wake

capturing is three-fourths of the way to an Euler method.) Another highly desir-

able capability would be the simulation of boundary layer effects. Such effects are

extremely important in the transonic flow regime. A final capability, which could

greatly aid the design process is an optimization algorithm, allowing the user to spec-

ify certain desirable flow features which TRANAIR would then try to achieve with

geometry adjustments.

In this chapter, we discuss some ideas on future efforts to improve TRANAIR.

In Section 4.1 we discuss efforts required to improve the reliability, accuracy and

efficiency of the current code. In the remaining sections we discuss improvements

in capability. In Section 4.2 we explore some of the issues involved in extending

TRANAIR to solve the full Euler equations, which would automatically yield a wake

capturing capability. An alternate, and preferred approach, still within the framework

of the full potential equation is described in Section 4.3. In Section 4.4 we briefly

discuss the addition of a boundary layer capability to TRANAIR. In Section 4.5 we

discuss implementation of design and optimization capability.
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4.1 IMPROVEMENTS TO THE METHOD

4.1.1 Reliability and Efficiency Improvements

In the current implementation of the GMRES algorithm the iterative procedure con-

tinues until the preconditioned residuals are reduced by a fixed fraction (assuming

the maximum allowable number of iterations is sufficiently high). Because of the use

of a drop tolerance in the sparse solver the condition number of the preconditioned

linear system solved by GMRES may vary considerably. Such a condition number

should be taken into account when assigning the above fraction. There are various

ways for estimating the condition number. For example, comparing the reduction in

real residuals with the reduction in preconditioned residuals can give a lower bound.

On occasion Newton's method has trouble converging on coarse grids, but does

quite well on fine grids. This usually happens when the configuration involves small

diameter plumes of differing total pressure and temperature. We suspect that on

coarse grids the plume geometry is not well resolved, leading to a nearly singular

boundary value problem. It would be fairly simple to ensure that the coarsest grid

always resolves small scale geometrical features. Moreover, the coarse grid should be

the minimal grid which does this, as denser grids may fix the shocks in the wrong

locations.

In the case of supersonic free stream flow a local free jet boundary condition

(i.e. zero perturbation potential) is currently imposed on the top, bottom and side

faces of the computational box. Such a condition is certainly better than a solid

wall condition, but both cause wave reflections back into the computational box.

No local boundary condition is entirely accurate, but an outgoing wave condition is

undoubtedly superior to a free jet condition and should be implemented.

Currently the drop tolerance used by the sparse solver is assigned by the user

based on the knowledge that a drop tolerance somewhere between .001 and .0001

has generally worked in the past. However, even in this range fill-in (and hence

SSD usage) can vary considerably. This is not an issue that the user should have to

worry about. The user should only specify the size of the SSD storage available, and

the code should then a_laptively determine a drop tolerance which would lead to a

decomposition of roughly this size.

Currently the off diagonal terms in the sparse matrix decomposition are dropped

when their magnitude is smaller than the drop tolerance times the magnitude of

the corresponding column (or row) diagonal. This works reasonably well, but many

improvements which would substantially reduce decomposition costs and storage are

possible. For example, the terms which are dropped could be added to the diagonal

or else the diagonal could be augmented by a fixed factor to improve stability when

poor conditioning is suspected.

Computation of the finite element and upwinding operators comprises from one-

third to one-half of the run cost of the current code. A good share of this cost could be

eliminated if operators associated with T-boxes which do not get refined or derefined

could be saved from one grid to the next.

One of the most time consuming aspects of a TRANAIR analysis is the construc-

124



tion of networks of panelsfrom availableconfiguration lofts. In the future it would
probably be best for TRANAIR to get its surfacedefinition from the lofts directly.
Given a loft for a surfacepatch TRANAIR could interrogate the loft in an adaptive
manner to build an unstructured surface triangularization whosedensity is deter-
mined by the estimated local curvature. Becausethe cost of solution dependsvery
weaklyon surfacediscretization it would bepossibleto make the initial discretization
sufficiently denseto accommodatethe finest grid. However,the unstructured nature
of the surfacediscretization would require the user to supply additional information
concerning the nature of output of surfaceflow quantities.

The sparsesolver is used as a preconditioner for unknowns in the reducedset.
Currently the reducedset contains all unknownsexcept for those located at subsonic
global grid nodes. Theseunknownsare preconditionedby the much cheaperPoisson
solver. Usingstandard elliptic multi-grid methods it should be possible to extend the

Poisson solver to handle refined grids. This would allow the elimination of subsonic

refined grid unknowns from the reduced set as long as they were not located at the

boundary. In many instances the size of the reduced set would decrease by as much as

50% leading to a substantial reduction in the costs associated with the sparse solver.

The process of interpolating from a coarse grid to a fine grid has already been

developed to facihtate grid sequencing. Such a process could also be the basis for

implementing a multigrid solution procedure. We recommend a limited implementa-

tion wherein the sparse solver preconditioner calculated on the next to finest grid is

also used on the finest grid. This can be done by collecting residuals onto the coarser

grid, using the sparse solver preconditioner as a smoother on this grid, distributing

the corrections to the fine grid and locally smoothing the fine grid residuals. Since

the fine grid is generally at least twice as large as the next coarsest grid the CPU and

storage savings of such a procedure could be very significant.

4.1.2 Upwinding Improvements

Currently, the "entropy condition" for ensuring compression shocks is achieved through

a first order density or mass flux retardation procedure. This procedure occasionally

causes the reliability problems and affects efficiency and accuracy of the code. The

first problem is that the upwinding is only first order whereas the remainder of the

method is second order. This forces the grid to be finer in supersonic zones than

in subsonic zones, although in supersonic regions the adaptive feature of the code

will limit grid refinement to regions with high flow gradients, somewhat alleviating

the problem. One course of action would be to implement a second order accurate

upwinding algorithm. Historically such algorithms have not been very robust, espe-

cially for complex geometries. A better course of action might be to develop a first

order algorithm with a smaller error coefficient. In fact, flux biasing (or retardation)

seems to be much superior to density retardation in this regard and there appear to

be possibilities of improving it by taking variations of stream tube areas into account.

Unfortunately, flux biasing can be shown to be singular when the flow becomes one

dimensional and the Mach number oscillates about Mach 1. This makes flux biasing

substantially less robust than density biasing in practice and it will first be necessary
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to modify the biasing formula in a manner which simulates the use of a subsonic

cutoff Mach number in density retardation formulas.

The potential flow assumption produces errors in normal shock strength when the

Mach number ahead of the shock is greater than approximately 1.4. Hafez[77] has

developed a correction to account for entropy production, which apparently allows

more realistic flow simulations at higher Mach numbers. This correction should be

implemented and tested in TRANAIR.

During the Newton iteration process, velocities emanating from boundary surfaces

may appear. If these velocities correspond to supersonic Mach numbers then upwind-

ing cannot be performed properly and the problem temporarily becomes singular.

This leads to a breakdown in the solution procedure. In the case of an engine exit,

where the velocity is supposed to emanate from the exit surface, we upwind densities

next to the exit to a fictitious density which corresponds to free stream Mach num-

ber. This works quite well if the exit Mach number should be subsonic and the free

stream Mach number is also subsonic. The linearized problem is then non-singular

and within several Newton steps the exit Mach number recovers to a subsonic value.

If the exit Mach number is supposed to be supersonic, then the user must specify this

Mach number (although not all values are feasible). We have not yet developed the

input formats to allow the user to do this, but we have demonstrated that by retard-

ing the density to a fictitious density corresponding to this specified Mach number,

the exit velocity eventually settles to the proper value. Therefore the input formats

should be developed.

We have not yet developed a strategy when the surface is a sohd surface or a

wake rather than an exit. Density is continuous across wakes so the problem may

be handled by upwinding to densities on the opposite side. In the case of solid walls

where the local flow should be supersonic it would be difficult to employ a fictitious

density, since the true local Mach number is only known upon solution. It might

be better to stop the flow dir .ection anomaly from arising altogether by damping the

Newton method based on velocity direction changes.

4.1.3 Solution Adaptive Grid Improvements

The ultimate goal of solution adaptive grid refinement is to produce an accurate

flow simulation at a low computational cost with minimal user intervention. In its

present form TRANAIR makes significant progress towards this goal. In working

with the solution adaptive process a number of ideas have emerged which will carry

TRANAIR considerably further towards this goal. Because these areas have not

been thoroughly investigated to date, the ideas discussed below have not yet been

implemented in the code. It is expected that after further analysis and careful testing,

their implementation will produce significant improvements in the effectiveness of

solution adaptive gridding (with minimal user intervention).

In the first place, TRANAIR would provide more effective solution adaptive grids

if it did a better job of exploiting the physical aspects of the flow. For example, if

in some region of the flow the local Mach number exceeds the fictitious gas Mach

number, the full potential equation is a poor approximation to the flow. Although
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the estimated errors in the neighborhood of such regions may be quite high, creating

higher grid resolution in such areas provides little benefit in terms of obtaining a

more meaningful engineering answer to the flow problem. Thus refinement should

be limited to regions where the flow remains physically sensible. In addition, where

real discontinuities in the flow field occur (i.e., at a shock), no matter how much

grid refinement is applied in the vicinity of the shock, jumps in the velocities will

still remain, and the presently implemented error indicators will remain large. Thus

some form of automatic local "shock limiting" is desirable to prevent grid refinement

beyond what makes sense for a given engineering application. At present there is such

a limiter but it is determined from user input. Shocks (particularly normal shocks)

can easily be recognized by the code, and thus it would be fairly straightforward to

automatically introduce limits to grid refinement wherever shocks occur, without any

user specification.

Another easily recognized physical phenomenon related to shocks is whether the

flow in a region is undergoing expansion or compression. With the current imple-

mentation of solution adaptivity, grid refinement tends to be attracted to expansion

regions (like the leading edges of a wing). Ultimately, this is a desirable phenomenon,

but when excessive grid is attracted to an expansion region, it can happen that latent

features of the flow field (for example, oblique shocks) do not attract adequate grid

density. The result can be a smooth pressure distribution which hides the existence of

the phenomenon. (The ONERA M6 wing has proven to be a very good case for ana-

lyzing this difficulty). Thus it appears to be desirable to suppress grid refinements in

expansion regions in the earlier steps of solution adaptive gridding. This encourages

grid refinement in regions where these latent features might occur. Only in the final

stages of solution adaptive gridding should the grid be permitted to cluster in expan-

sion regions. The present code allows for suppression of grid refinement in expansion

regions, but such regions must be identified a priori by a user.

Some exploration has been made of alternative error indicators. The present im-

plementation bases these on discontinuities in velocity magnitudes from cell to cell.

This indicator provides high error estimates when the velocity magnitude jumps, but

such error estimates are relatively small when a jump is due to a turning of the veloc-

ity (as occurs for oblique shocks). It is possible that an error indicator based on the

change in the direction of the velocity would provide earher emphasis of more latent

flow features, such as oblique shocks.

In the early applications of solution adaptivity, the same type of error estimates

and the same grid refinement strategy have been applied for subsonic, transonic and

supersonic free stream flows. It is quite likely that because of the physical differences

in these problems, different solution adaptive strategies may be beneficial.

Ultimately an overall strategy for solution adaptive refinement will emerge from

these ideas which will consist of a number of error indicators along with an appropriate

weighting as the solution adaptive gridding continues in order to:

• capture the latent features of the flow early, when the computational costs are

low;

• recognize regions where true discontinuities occur and limit refinement to length
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scalesthat make good engineering sense;

• provide sufficient grid resolution in expansion and stagnation areas to produce

accurate solutions on the final grid;

• automatically recognize regions of non-physical flow features and avoid wasting

grid resolution there;

automatically (or with very little user intervention) detect regions where there is

little interest in resolving high flow gradients such as wing tips, but at the same

time, allowing the user to study these areas if that is the design goal;

provide a near optimal strategy for solution adaptive gridding for subsonic, tran-

sonic, and supersonic flows using only knowledge of the free stream Mach num-
ber.

The elements of this final strategy have been identified and some issues have been

explored. Significant improvements can be made in the adaptive gridding, resulting
in more efficient and accurate solutions.

4.1.4 Higher Order Elements

Higher order finite dements are currently being developed for structures applications

[78],[791with remarkable success. Incompressible Navier-Stokes calculations are also

being attacked with these methods [80],[81]. For smooth problems, these methods

offer exponential order convergence (better than any algebraic order of convergence)

in the number of unknowns. For problems with singularities, they offer substantially

better algebraic rates of convergence. These methods have the same rate of con-

vergence as spectral methods, but are not subject to the same limitations such as

rectangular domains and separable grids.

Thus, there is the potential for large savings in CPU time and storage in TRANAIR

with the proper use of higher order finite elements. In particular, in solving the full

potential equation the important flow quantities are defined in terms of the velocity,

which is only first order accurate in the mesh spacing locally. Since the velocity is

first order, to achieve a factor of two reduction in error currently requires eight times

as many elements. With second order velocity only three times as many elements are

required. Thus, the payoff of higher order methods is great.

Higher order basis functions that have successfully been used include Tchebychev

polynomials, Legendre polynomials, and other higher order polynomials. Continuous

basis functions seem to be much more flexible than ones with more degrees of inter

element continuity. In TRANAIR, one would implement a triquadratic element basis

function for the potential. This would require a trilinear approximation to the den-

sity. The density would be an interpolating polynomial fitting four points in every

element. Integrals would probably best be evaluated with numerical quadrature rules.

A sophisticated adaptive strategy would be needed to determine where to use these

higher order elements and where to use the currently implemented trilinear elements.
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An unresolvedissueis how to do higher order upwinding in supersonicregions. We
can observehowever, that a secondorder upwinding of density could be achieved
without any moreelementconnectivity information than is currently in TRANAIR.

There have recently been significant advancesin iterative methods for the mod-
erately sparsehnear systemsresulting from thesediscretizations. The solution tech-
nique can usea recent result of Babuskathat the lowestorder stiffnessmatrix is an
excellent preconditioner for the higher order finite element problem. Thus, the cur-
rent Jacobianmatrix calculation and decompositioncould beusedasthe direct solver
preconditioner. If successful,this would savesignificant coding and computational
expenses.

Thus, the broad outlines of a higher order method for TRANAIR have been
thought out. Such a method could provide much greater accuracy at reasonable
cost than current methods which are all secondorder in the potential. This could
enablethe accurate calculation of suchsensitivemeasuresof performanceas inviscid
drag, which current methods can not predict.

4.2 EULER FORMULATION

4.2.1 Properties of Euler Equations

The steady state Euler equations express conservation of mass, momentum and

energy as follows:

Conserved D.E. FLUX

Quantity

mass _ . _z = 0 _z = p _ (4.1)
,,-#

momentum V'm -- 0 m = Vc'U T+ pI (4.2)

energy V" E = 0 E = H W (4.3)

In the first column we display the quantity conserved across discontinuity surfaces,

i.e. the normal component of flux, in the second, we display the differential equation

for each conservation law, and in the third, we display the relevant flux. To complete

the description we define total enthalpy, H, and entropy, S.

enthalpy definition H - (7 )P + 2q ' q = _r (4.4)

entropy definition P.L = e('y-1)s( P._...)'Y (4.5)
poo poo

In order to ehminate the possibility of expansion shocks we need an entropy condition

which we choose to introduce via artificial pressure, i.e. we redefine m as

m= T+151e .V_p (4.6)
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Here V- p is a backward derivative and e a vector in the direction of U having

magnitude on the order of the grid size. The -_ is non-zero only in supercritical

regions. For the discussion which follows it suffices to ignore artificial pressure.

To better understand the Euler equations we can recombine Eqns. (4.1)-(4.3) in
the following ways

(energy) - H(mass) _-- W" V H = 0 (4.7)

(q2 _ H)mass- U .H(momentum) + (energy) = p 1,_'- V S = 0 (4.8)
P

(momentum)-- U (m.ss) - - W ® -p V S + p V H - 0 (4.9)

Here _=_7 ® U is the vorticity vector. Equation (4.9) can be rewritten in a better

way by introducing the concept of swirl, i.e.

Then Eqn. (4.9) becomes

W.w

G - p2q2 - swirl (4.10)

--, p --* --* 1

w=G_z +p-_q2 W ®V S--- 1_ @ V H (4.11)pq2

"--¢*

Using Eqn. (4.1) and the fact that V • w= 0 we obtain an equation for G by taking

the divergence of Eqn. (4.11), i.e.

r

_ _ _ -W.vG=-v. P W®VS--- 1 I_ ® V HI (4.12)
pq2 J

Now let us assume we have an initial estimate of W, and let U, S and H be the

fundamental unknowns. Equation (4.7) is a convection equation for H and states

that H is constant along streamlines. If H is specified at the head of every streamline

then H may be found at every point in the flow field. In particular if H is the same

constant at the head of every streamline then H will be identically constant in the

flow field and the flow will be isoenergetic. Mechanisms which produce non-constant

H include propellers and jet engines. The appropriate value of H must be specified

at the head of each streamline leaving these mechanisms. From Eqn. (4.8) we see

that S also satisfies a convection equation. Entropy must also be specified at the

exit of propulsion devices. However, entropy also has field sources in the case that

dissipation is present, e.g., when Eqn. (4.6) is operable. Then Eqn. (4.8) will have a

non-zero right hand side. These "convection" sources should be negligible except at

a shock. Once H and S are known, Eqn. (4.12) becomes a convection equation for G

with a specified right hand side field source. This equation can be integrated to give G

everywhere in the flow field once G has been specified at the head of every streamline.

If S and H are constant in the flow field, then the only source of swirl is via boundary

conditions at the head of streamlines. Again, propulsion devices produce swirl, but

another major source is the Kutta condition at trailing edges. From Eqn. (4.11) we
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see that in the absence of variations in S and H vorticity can only be produced by

swirl. In fact, free vortex sheets in potential flow are produced entirely by swirl.

Once S, H and G are found everywhere in the flow field, w may be determined

from Eqn. (4.11). If we decompose U into a scalar and vector potential

then A may be determined by taking the curl of both sides, i.e.

(4.13)

--, 2--_

V A=_ (4.14)

As in potential flow, q_ may now be determined from the mass conservation Eqn. (4.1)

and the specified boundary condition on U. Unfortunately, this is not the same ¢ as

in potential flow. Even in portions of the field where _ is zero, .4 will not necessarily

be zero, since Eqn. (4.14) spreads A to the whole flow field.

An approach which casts the Euler equations as a more direct generalization of

potential flow is based on the Bateman variational principle. Here we seek a stationary

value of a payoff, J, defined by

//;J = - p'dV , p" = p'(U,H,S) (4.15)

here p" is an arbitrary function of U, H and S.
Let us define

--. Op" Op* Op" (4.16)
w- OU ' P= OS ' p=O---H

If we choose p* to be pressure as the usual function of U, H and S, then Eqn. (4.16)

is consistent with the usual definitions of I_, p and p. (One could also choose p" to

be the second-order expansion of p about p_ , in which case I_" becomes the usual

linear mass flux vector used in panel methods. Rolled up vortex sheets are possible

with such an approximation, but not shocks.) Taking a variation of J and neglecting

higher order terms we obtain

(4.17)

Let us now use a Clebsch decomposition of the velocity vector, i.e.

= ,_+Q, Q=#V,_-SVrl+(H-H_)Vff (4.1s)

Then

..., .-,

- 5S Vrl-SV6,1

+ 6H Vi+(H-Hoo) V6( (4.19)
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Hence

Integrating the secondintegral

The first equation is the massequation and the last is the energyequation. The
othersare then equivalent to the momentum equation ascan beseenby substituting
Eqn. (4.18) into Eqn. (4.9).

Given an initial estimate of 1_ Eqn. (4.27) and Eqn. (4.28) can be solved as
convectionequations for S and H. Then p and p may be evaluated from Eqn. (4.16).

The convection Eqns. (4.23)-(4.26) can be solved for the adjoints A, #, r/ and (.

This determines Q via Eqn. (4.18). The potential (I) may then be determined from

Eqn. (4.22), i.e.

V "(p V (I)) = - V" Q (4.29)

If the flow is known to be isoenergetic, then H can be set equal to Hoo and we can

delete Eqn. (4.28) and Eqn. (4.26) from the system. One can proceed similarly for

isentropic flow. By choosing A and # to be zero at upstream infinity we guarantee

that Q exists only where vorticity is present. Hence wherever potential flow exists,
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alone defines the flow. Euler flow can be interpreted as potential flow with field

sources Eqn. (4.29) which exist only in regions having vorticity and whose strengths

are determined from convection Eqns. (4.23)-(4.28).

4.2.2 Problems with Euler Equations

Although we have cast the Euler equations as a generalization of the full potential

equation, the introduction of convection equations creates a considerable number of

numerical problems. In this section we discuss the problems we feel must be addressed

and to some extent resolved before a considerable investment is made in a production

full configuration Euler code. (The results shown below are obtained from a special

test code written for the Euler equations)

The first problem concerns false production of a convected quantity. As a rule,

we want to solve the conservation equations (4.1)-(4.3) in conservative form, not

simply to capture discontinuities correctly, but to calculate accurate total forces and

moments for large, complex configurations where truncation errors are hard to control.

However, if we solve the Euler equations in conservative form, convection equations

such as (4.8) will effectively have non-zero field sources on the right hand side due

to truncation errors. This means that entropy may increase or decrease along a

streamline when it should remain constant. The error is not locally confined, since

false entropy which is generated upstream will convect downstream. In many current

codes entropy production is responsible for poor drags and boundary layer matching

as well as premature separation.

Even if Eqn. (4.8) were to be solved directly, numerical diffusion errors would still

create problems. Convection operators such as I,V • V all have inherent diffusion due

to truncation errors. For grids used for inviscid modeling this numerical diffusion

is orders of magnitude greater than that produced by viscous terms of the Navier-

Stokes equations, hence nonphysical results are possible. The numerical diffusion is

greatest when crossflow gradients are largest, e.g. at slip surfaces. To illustrate the

problem we consider channel flow over a rectangular bump. A numerical solution

was obtained using a rectangular grid ad hoc test code. In Figure 4.1 we show

the results of convecting a smooth distribution of entropy at the entrance using a

fairly good upwind discretization of the W • V operator. The isentropic curves

correspond closely to streamlines. This is true even for the bottom streamline which

passes through regions of stagnation as well as large expansion. In Figure 4.2 we

show results in the case of a discontinuous initial distribution of entropy. Here a

considerable amount of diffusion takes place even on streamlines which lie in a region

of relatively uniform flow. Clearly such diffusion must be eliminated if one wishes to

calculate the effects of wing wakes on downstream components of the configuration.

One can use non-diffusive numerical schemes which require every value of entropy to

be precisely equal to some upstream value in the absence of legitimate dissipation.

In Figure 4.3 we show the results of using such a scheme. Obviously there are no

diffusive errors. However displacement errors are still possible when using such a

scheme although they are rather small for this particular case. The major problem is
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that a non-diffusive scheme is difficult to implement in a flux conservative formulation,

and it is this problem which will require considerable effort to solve. There are a

variety of possible approaches which introduce additional degrees of freedom so that

the convection and flux conservation equations may be solved simultaneously. The

Clebsch formulation is one such approach, and a displaced location for convected

unknowns is another. These approaches will also solve the false entropy production

problem as well.

A third problem with the Euler equations concerns uniqueness. There are cer-

tain situations where an Euler solution cannot exist without separation and closed

streamlines[83]. Obviously the level of the convected quantities is indeterminate on

closed streamlines. In fact the size of the separation region itself will depend on what

value one's program happens to assign to the convected quantities. Thus quantities

such as drag and lift will turn out to be somewhat arbitrary. There is not much

one can do about this problem except try to eliminate false entropy production so

that one achieves an unseparated solution when it exists. If such a solution does not

exist then probably one should strive for a solution which minimizes the extent of the

separation region.

A fourth problem with Euler equations concerns vortex separation (or swirl gener-

ation). The Euler equations do not contain enough physics to predict the location of

separation lines or strength of separation except in special cases such as sharp edges.

Thus one must be able to effect separation on the basis of outside knowledge. The first

task is to clean up false entropy and swirl production so that premature separation

does not take place. Secondly one must be able to specify the separation line and type

of separation directly. Pure vortex separation is achieved by specifying a source for

swirl only. (Allowing entropy increases will lead to contaminated vortex separation.)

The strength of the swirl sources must be determined by a Kutta condition.

A final problem concerns vortex instabilities and related non-existence. Current

literature[84] seems to indicate that the Euler equations have a legitimate solution

only in special cases (e.g. potential flow). Vorticity seems to collect in unstable cores

with increasing concentration, and blowup may occur in finite time. The blowup

can be prevented by numerical diffusion. However in attempting to eliminate excess

numerical diffusion for other reasons we may encounter vortex instabilities, and then

the question becomes how much numerical diffusion is correct. This can be determined

only by considering the full Navier-Stokes equations.

4.3 WAKE CAPTURING

We believe that if we can implement a good wake capturing scheme in TRANAIR then

we will be able to handle 85% to 95% of the cases that an Euler solver could handle

with much less risk, development cost, and run cost. This is due to the fact that

most inviscid problems of interest in full configuration analysis really involve regions

of potential flow separated by vortex sheets. These regions may possess different

total pressures and temperatures, but we have already demonstrated the ability of

TRANAIR to account for such effects (see Section 5.2.6). It is true that shocks
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generatevolume vorticity. This vorticity is generally negligible except for extremely
strong shocks,hencein most casesthe Hafezcorrection [77]can probably produce the
correct shock strength. It is true that TRANAIR cannot model volume swirl effects,

but such effects could be modeled by collecting the swirl into vortex sheets and then

employing the wake capturing feature described below. Hence, it is clear that the

addition of a wake capturing algorithm will make TRANAIR rival many Euler codes

in capability, while offering the advantage of reliability, efficiency and the ability to

analyze extremely complex geometries without a great deal of user effort.

A variety of approaches for capturing wakes, short of solution of the full Euler

equations, are possible. Unfortunately, many of them suffer from the same problem

that was discussed in the previous section, i.e., excessive numerical diffusion arising

from the discretization of convection equations. It is true that the adaptive grid

capability might allow us to ignore the problem by concentrating sufficient grid in

wakes to keep diffusion under control. However, a rough calculation shows that to

convect vortex cores and sheets from the wing to tail with sufficient accuracy to be

able to predict accurate tail loads would require at least triple the grid used to solve

the problem with fixed wakes. The cost would currently be prohibitive. We have

therefore been exploring compromises.

There are many arguments to consider in developing a wake capturing algorithm,

some of which have been mentioned above. We have finally arrived at what we be-

lieve is a reasonable compromise between accuracy and user effort. This algorithm

is based on a novel method developed and communicated to us by S. S. Desai[86]

which combines vortex tracing methods with a non-linear full potential algorithm.

The authors assume separation lines are specified and then emit discrete vortex fila-

ments from these lines. These vortex filaments are aligned with the mean flow which

is determined by combining the velocity induced by these vortices with the velocity

computed on the full potential grid. This method often works quite well, but occa-

sionally has a few problems. First the computation of the velocity induced by the

vortex filaments is expensive, and second, this velocity is highly singular, resulting in
vacuum conditions near each filament.

We are currently analyzing several modifications to this method. First we note

that vortex filaments are equivalent to the edges of constant strength doublet pan-

els. By employing linearly varying doublet panels instead, the 1/r singularities can

be eliminated. Moreover, by interpreting the doublet panels as jumps in potential,

one can take their influence into account through local jump conditions rather than

through influence coefficients. The net effect of these two modifications is equivalent

to a method whereby the positions of the current wake type-18 networks are updated

so that each doublet panel side edge is aligned with the local mean flow direction.

(We have checked that this condition is still applicable when the total pressure and

temperature are different on the upper and lower sides of the doublet panels. Here

one must calculate the mean flow direction using upper and lower mass flux vectors

scaled by appropriate factors based on total pressure and temperature.)

At the moment we are accounting for the effect of wake panels on the local flow

by incorporating them in the local D-region operators. This limits the generality of

wake shape by requiring that wake panels cannot cut themselves or any portion of the
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vehicleboundary. Moreover, D-region operators must be recomputedevery time the
wakeposition is updated. It wouldbe better to "capture" the discontinuities induced
by the doublet panelsby computing their contribution to the field operators on-the-
fly, usingmethodssimilar to thoseusedin capturing thin layersin EM TRANAIR[40].
Sucha procedurewould, for example,allow a wing wakesheet to cut a tail without
having to separatethe wakesheet into two pieces.

The main advantageof the techniquejust describedis that wakediffusion is virtu-
ally eliminated. Moreover, onedoesnot havethe expenseof adding extra unknowns
or derivatives everywherein the flow field just to account for the possible existence
of a wake. In one sensethe method could be called "wake fitting". However the
analogy to "shock fitting" doesn't really hold. Only the separation line really needs
to bespecifiedby the user. This is reasonablesince separation is basically a viscous
phenomenon. Once the sheetgets started there is no problem associatedwith 'rec-
ognizing' a wakeasthere is in shockfitting. In fact the method is much more closely
related to the Clebschdecomposition. Here the p parameter is precisely the doublet
strength in the wakeand the gradient of the A lambda parametercorrespondsto the
normal vector of the doublet sheet.

4.4 BOUNDARY LAYER

In the vast majority of flow cases of practical interest the effects of viscosity are

confined to a boundary layer next to the configuration surface. The influence of

a boundary layer on the outer inviscid flow can be of major significance in some

instances. One instance is where boundary layer separation produces a vortex sheet

extending out into the inviscid flow field. Another instance is where shock-boundary

layer interaction effects cause substantial thickening of the boundary layer and a

correspondingly large modification of the effective configuration surface as seen by the

outer inviscid flow. The latter effect is often of great importance in transonic analyses.

In Figure 4.4 we show an analysis performed by Boeing's A488 code[87] on the 747-

200 wing at Mach 0.86 and at 2.70 degrees angle of attack. The code was run with

and without boundary layer coupling and the results were compared to experiment.

The coupled results are in much better agreement with the experimental results, and

the primary effect of the boundary layer appears to be a weakening and upstream

displacement of the normal shock. For some wings the effect is less pronounced, but

one cannot know this without doing the actual boundary layer analysis.

It would be a fairly straightforward task to couple the boundary layer code in

A488 to TRANAIR. However, boundary layer codes often tend to be the weak link

in a flow analysis. Transition models, turbulence models, and shock-boundary layer

interaction models are all very ad-hoc in nature. There is not much that can be

done about this. In addition, coupled transonic/boundary layer codes often have

convergence problems due to the coupling itself. The input to most boundary layer

codes is the inviscid pressure distribution and the attachment line. The boundary

layer code proceeds in a marching fashion to generate boundary layer thickness for

delivery back to the inviscid code, and the inviscid code generates a new solution.
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This procedure is repeated until convergence, which is not always achieved. Moreover,

premature separation can halt the boundary layer marching procedure.

Due to the use of a sparse direct solver TRANAIR could be coupled to a boundary

layer code directly. That is, the boundary layer equations could be treated in the same

manner as the pressure equations (see Section B.3). Moreover, because of the direct

nature of the solution, marching is no longer necessary (although the equations would

be arranged in marching order to minimize fill-in). Hence, it would be possible to

allow the introduction of elliptic terms, resulting in, e.g., the thin layer Navier-Stokes

equations.

4.5 DESIGN AND OPTIMIZATION

TRANAIR currently has a rudimentary sequential inverse design capability. It allows

the user to specify pressure coefficient at upper surface corner points of a thick surface

network, or jump in pressure coefficient and thickness slope at corner points of a thin

surface network. In the first case the network surface is to be relofted parallel to

the upper surface mass flux vector. In the second case the surface is to be relofted

parallel to the average mass flux vector. No relofting capability has been attached

to TRANAIR, as such a capabifity is strongly case dependent and intimately tied to

one's geometry generation system.

The procedure just described is similar to the cycled boundary layer coupling

described in the previous subsection. It can often be effective, but is certainly not

robust and may require intervention by an expert user. We again prefer a more direct

approach based on the use of the sparse solver. In such an approach the parameters

describing variations in geometry would be combined with flow unknowns and the

whole system including pressure specification and impermeability conditions would

be solved as a directly coupled system.

Development of a directly coupled inverse design program would represent a major

step towards a full optimization capability. Here an actual payoff function would

be minimized with respect to a set of controls (geometry perturbation parameters),

subject to inequality constraints on these controls as well as the state equations (full

potential equation).
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Chapter 5

CONCLUSIONS

A new approach to solving the full potential equation about arbitrary three-dimesional

geometries has been presented. This approach has been implemented in a computer

code called TRANAIR. A wide variety of subsonic, transonic and supersonic results

have been presented. They indicate that TRANAIR has made substantial progress

towards the objective of offering aerospace vehicle designers a reliable, general pur-

pose, full configuration flow analysis tool that is relatively easy to use. In particular,

these results show that it is indeed possible to eliminate the costly and time consum-

ing process of generating a surface fitted grid while maintaining the ability to capture

small scale flow details accurately. Further work to improve TRANAIR and extend

its domain of applicabilty has been discussed.
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Appendix A

OCT-TREE DATA

STRUCTURES

A.1 DATA STRUCTURE ORGANIZATION

A compact data structure which contains essentially all the information regarding the

refined grid has been developed. It allows the TRANAIR code to concentrate many

small boxes in areas where greater solution detail is needed and fewer and larger boxes

in areas where less solution detail is desired. While usually refered to as 'the oct-tree',

the data structure is actually a forest of oct-trees where each oct-tree root is a box in

a uniform, regularly indexed grid. The data structure allows efficient extraction of a

variety of information, such as the location of nodes and element centroids, box size,

box level, node indices, box adjacency, and identity of boundary boxes.

A.I.1 Base Grid

The global grid (described in Section 2.3.3) specified over the computational domain

is uniformly derefined to obtain the base grid. Each base grid box becomes the root

of an oct-tree. All the descendent boxes of each base grid box physically lie within

that base grid box.

A.1.2 Oct-Trees

Each box in the data structure can be recursively subdivided (refined) into eight

similar boxes. The hierarchy of boxes formed in this process is known as an oct-tree.

The oct-tree data structure represents a parent-child relationship between a box and

the sub-boxes formed by its subdivision and also the sibling relationship between the
sub-boxes.

Some restrictions are placed on the refinement to minimize data structure size and

to simplify the problem. First, boxes are refined by subdivision into exactly eight

equally sized sub-boxes. This greatly reduces the data structure size by eliminating

the need to store box centroids and sizes. It also has the effect of keeping the aspect

ratio of all boxes equal. Box centroids and sizes are derived from the box's position in
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the oct-tree hierarchy. Second, no two face or edge neighbors in a "legal" refined grid

differ by more than one level, (see Figure A.1), which greatly reduces the solution

computation complexity.

÷ +

Figure A.I: Grid "Legahzation" Example.

The basic oct-tree data structure is based on boxes. However, it has been extended

to accommodate nodal information. A node is located at a corner point of one or more

boxes. Nodes are indexed by assigning a box to the node at its lower-left-near corner.

To account for all nodes at refinement interfaces, a pseudo-refinement is performed

(Figure A.2). Pseudo-refinement creates boxes (called pseudo-bozes) that are assigned

to nodes, but are not used as finite elements in the solution process.

P seudo

Refinement

to Identify

this Node

i

!
I
t

.......... ............
t

i

Figure A.2: Pseudo-refinement to Represent the Nodes
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A.1.3 Terminology

B-Box (Base Grid Box): Any of the base grid boxes in the uniform, rc<!l]:,,:-!v

indexed grid derived from the global grid. Base grid boxes c_re t]_ >)o',< ,f ca<!;

of the oct-trees and have no parents.

• O-box: Any box in the oct-tree.

• R-Box (Red Box): Any unrefined box. An R-Box can contain a finite eiemerit

trial function.

G-Box (Green Box): A pseudo-box created so that all nodes at refinement intor

faces are associated with a box Some G-boxes can lie outside the cor_p,,_tati,_> _

domain to define the nodes on the boundary of the computational domain.

U-Box: Any box (or pseudo box) whose lower-left-near corner is ass,_c,ated _ it
a node.

• T-box: An R-box that intersects the boundary

A.2 DATA STRUCTURE REPRESENTATION

The data structure used in TRANAIR to describe oct-trees is a modifica_,ion of ttn:_,,

described by Samet [57]. The data structure is divided into six areas: the head,r, t!,_

base grid descriptor, the refinement family, a stack, a boundary box map. and r<:iue-

ment pointers. A global overview of the data structure array is shown in Figure ,.\._

A.2.1 Header

The header area is fixed in size and location. It maintains a variety of informatior_

about the data structure including the locations of its various components and certain

statistical information about the data structure and the grid.

A.2.2 Base Grid Descriptors

The header area is followed by a base grid descriptor area. This area is divided into

two regions, the base grid pointers and the U-box accumulators for the base grid. The

two regions are laid out as parallel arrays of the size of the base grid. Each element

of the base grid pointer region identifies the location of a refinement family for a

particular base grid box. A zero value here implies that the base grid box is not
refined. The U-box accumulators are the number of U-boxes encountered in the data

structure during a sequential traversal of the data structure.
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Figure A.3: The Overview of the Oct-tree Data Structure
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A.2.3 Refinement Families

The base grid descriptor area is followed by a series of refinement families. A refine-

ment family describes a subdivision of a box into eight smaller boxes. A refinement

family is shown in Figure A.4. Each refinement family data block consists of five

integer fields:

Parent

Refinement

Pointers

U-box

Accumulator

Number of

Refined

Children

Octant

Figure A.4: A Refinement Family

The first field contains the address of the parent. The parent pointer is used to

facilitate upward traversals in the tree.

The second field contains the location of a data block that describes the children

of this refinement family. A zero value in this field indicates that none of the

eight children are refined.

The third field describes the number of refined children contained in the block

referenced by the second field.

The fourth field is the U-box accumulator. It describes the number of U-boxes

encountered in the data structure during a sequential traversal of the data struc-

ture.

• The fifth field is the octant of this refinement family in the refinement of its

parent.

Because the third (number of refined children) and fifth (octant) fields contain

small values, it is reasonable to compress these values into other data fields to conserve

memory. As a result, only three integers are used to store the refinement families.
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The first integer is equal to the first field. The second integer contains the second

and third fields of the data structure. The values for these fields are given by:

FIELD #2 = (INTEGER #2) / 16

FIELD #3 = ABS((INTEGER #2) MOD 16)

The third integer contains the fourth and fifth fields. The values for these fields

are given by:

FIELD #4 = (INTEGER #3) / 16

FIELD #S = ABS((INTEGER #3) MOD 16)

As bc_yes are refined, refinement families are appended to this list. This area grows
towards the end of the total data structure.

A.2.4 Scratch Stack

The refinement family area is followed by a small scratch stack area that is used to

record traversal paths. The stack area is not used until after all refinements have

been made and the refinement family list has stopped growing.

A.2.5 T-box Map

The stack area is followed by a T-box mapping vector. The mapping describes which

O-boxes have a non-empty intersection with the boundary. The map is constructed

as an ordered (ascending) array of those O-boxes who intersect the boundary. The

creation of this map is the final step in the generation of the oct-tree data structure.

A.2.6 Refinement Pointers

The final area in the data structure contains the refinement pointers. The refinement

pointers describe the addresses of the refinement families for the children of refinement

families. This area is composed of variable size blocks. Each block is composed of a

set of number pairs that describe the address of a refinement family, and the octant

that refinement family lies in. An example refinement block is shown in Figure A.5.

B_ause the octant value is small, the octant and pointer values are stored together

in one integer. The pointer and octant values are given from a data value as:

POINTER = (Data Value) / 16

0CTANT = ABS((Data Value) M0D 16)

Additionally_ a back pointer is provided to facilitate oct-tree construction. The

back pointer contains the address of the refinement family whose refinements are

being described by this block. This pointer, like the others is stored with an octant

value. Back pointers are assigned and octant value of zero to distinguish them from

sibling refinement pointers. The back pointers are removed to conserve memory after

the oct-tree is constructed. A flag in the header field indicates the presence of the

back pointers.

The refinement pointer area grows from the end of the data structure toward the

refinement families. When insufficient space remains for growth the data structure

size is enlarged within the code so that expansion can occur.
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Figure A.5: A RefinementPointer Block

A.3 MAJOR ALGORITHMS

This section describes the major algorithms used to manipulate and interrogate the

oct-tree data structure. The description of the algorithms are sketches and are not

intended to be exhaustive explanations.

A.3.1 Data Structure Modification

Refining a Box

When a given (unrefined) O-box is refined, a refinement family is added to the refine-

ment families area of the data structure. The parent of the new refinement family is

the O-box being refined. The octant of the box being refined is defined by:

OCTANT = ((O-box - NXYZB - I)) MOD 8 + i

where NXYZB is the number of base grid boxes. The refinement pointer block of the

O-box's parent refinement family is modified so that the 0CTANT octant of the pointer

block contains the address of the new refinement family.

Creating the O-box/U-box Mapping

The O-box/U-box mapping is created by storing in each refinement family an accu-

mulation of the number of U-boxes encountered in the boxes defined by families that

precede it in the list.
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Creating the T-box/O-box Mapping

The T-box/O-box mapping is implemented as an ordered (ascending) list of O-boxes.

A.3.2 Data Structure Interrogation

Finding Refinement Family

The index of the refinement family defining an O-box is given by:

FAMILY = ((O-BOX - NXYZB - i ) / 8) + I

where NXYZB is the number of base grid boxes.

Determining Box Number From Refinement Family Index

The O-box number of a refinement family can be found by:

OBOX = NXYZB + 8 * FAMILY + OCTANT

where NXYZB is the number of base grid boxes and OCTANT is the octant of this family

in the refinement of its parent.

Finding Box Centroid and Size

Box centroids and sizes are calculated by ascending the oct-tree hierarchy to the

base grid root. At each level reached in the hierarchy, the box centroid (initially

(0,0,0)) is moved towards the parent box's centroid by examining the current octant

and number of levels traversed. When the base grid box is reached, the calculated

centroid is translated to its center. The size of the box is equal to

1 / ( 2 ** LVL ) * BGSIZE

where LVL is the number of levels traversed and BGSIZE is a vector describing the

dimensions of the base grid box.

Finding .Child Boxes

A given box has either eight or no children. If refinement family for the box exists

then it has eight children. Otherwise, the box is unrefined (has no children). Child

O-box numbers are given by:

OBOX - NXYZB + 8 * FAMILY + OCTANT

where NXYZB is the number of base grid boxes and OCTANTis numberlying between

one and eight.
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Finding Neighboring Boxes

Neighboring boxes are found by traversing up the oct-tree hierarchy until either an

ancestor common to both the box and the neighboring box is found, see Figure A.6.

The common ancestor is found if the last parent in the pedigree is on the comple-

mentary side of the child (i.e. if the south neighbor is desired then the parent should

be on the north side of its child). A downward traversal along a path complementary

to the upward path is performed. If the root is reached and the ancestor is yet to

be found then the neighboring box lies in a different tree in the oct-tree forest. The

neighboring tree is the base grid box lying in the desired direction. For a legal tree,

there can be zero, one, or four neighbors in any face direction and zero, one, or two

neighbors in any edge direction. In Figure A.6 the traverse path for finding the north

neighbor of the box 1 is shown as an illustration.

a

1 2

Figure A.6: Finding Neighboring Boxes.
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Mapping O-box and U-box Indices

To find the U-box index of an O-box, the refinement family of the O-box must be

found. If the O-box is refined and the refinement is not a pseudo-refinement, then it

is not a U-box, otherwise, the U-box accumulator is recovered from the refinement

family. The U-box accumulator is then decremented by one for each sibling whose

octant is greater than that of the O-box, and who is not refined or who is a pseudo-

refinement.

The O-box index of a given U-box can be determined by performing a binary

search on the (ordered) list of U-box accumulators to find the refinement family whose

U-box accumulator is closest to that of the given U-box. The U-box accumulator

is incremented by one for each child who is either unrefined or who is a pseudo-
refinement until the U-box accumulator is the desired U-box. The O-box is the last

child who caused the U-box accumulator to be incremented.

Mapping O-box and T-box indices

To find the O-box associated with a particular T-box index simply involves retrieval

of the value from the T-box map. A binary search is performed to recover the T-box

index given an O-box.

Finding the U-Box Containing a Point

To find the U-box containing a point in the computational volume, determine the

base grid box containing the point. Traverse the oct-tree rooted at the base grid

box by choosing, at each level, the child box that contains the point. The traversal

terminates when a leaf node of a pseudo-refinement is found.
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Appendix B

OPERATOR DEFINITION

In this appendix we describe how the various operators (discrete equations) in TRANAIR

are defined and constructed.

B.1 IMPLEMENTATION

In this section we discuss the way in which the Bateman principle is used to create

operators at each grid point. The departure point is Eqn. (2.11) which is repeated

here

5J = - W" 5 V df_ (B.1)

We take ft as some subregion of the grid box shown in Figure B.1. First we define

perturbation potential ¢ as

and then rewrite Eqn. (B.1) as

6J = In -p (V_o + ¢¢). 5VCd_

We define Po as p(qo 2) in the following equation

1

(B.2)

(B.3)

J (B.4)

where qo is the value of q at the centroid of _. We then make the approximation that

5J ,_ -po /n (Voo + V¢)" 5¢¢df_ (B.5)

This approximation is valid in incompressible flow where p is constant. If the basis

function for ¢ in _t is linear then V is constant in gt and Eqn. (B.5) is still valid.

However the basis function for ¢ is actually trilinear and strictly speaking V varies

in gt, but because we evaluate po at the centroid of _, Eqn. (B.5) and (B.3) are the

same to second order.
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The basis function for ¢ in the grid box of Figure B.1 is defined as

¢ = ¢o + ¢_z + Cyy + ¢_z + ¢_uxy + Cy=yz + ¢_zx + ¢_y_xyz (B.6)

where the origin for the x,y, z coordinate system is in the center of the box. Note

that this expression has eight unknown coefficients. These coefficients are chosen so

that ¢ exactly fits the eight values ¢1, ¢2, ¢3, ¢4, Cs, ¢6, ¢7, Cs at the box corners.

To express this fact in compact form we define

x u ,C z (8.7)
Ax ' q Ay Az

1 i_< 1 1 We rewrite Eqn. (B.6)Note that for the box of Figure B.1, I_ [-< _',[ 7] _",[ C [-< _'.

as

where ¢_ = Ax¢_, etc... This can be rewritten as

(B.S)

where

and

But for some matrix R,

where

Thus

¢=b._ (B.9)

b= (I,_,r/,C,r/C,C_,_q,_¢r/_)

= (¢o, ¢_, ¢,, ¢¢, ¢,_, ¢¢_,¢_,, ¢_<)

(B.10)

(B.II)

= R_ (B.12)

= (¢1,¢2, ¢3,¢_,¢s,¢_,¢7, ¢8) (B.13)

¢ = b.R-7 (B.14)

The matrix R can be calculated by evaluating ¢ of Eqn. (B.9) at each of the eight

corner points to obtain

Y= B_ (8.15)

Here B is an 8x8 matrix whose rows are b evaluated at each of the eight corner points.

From Eqn. (B.12) R is the inverse of B. One can use a computer to invert B, but

it is more satisfying to combine rows of B in a judicious manner to deduce R. For

example, by adding all the rows of Eqn. (B.15) together, we get ¢1 + ¢2 + ¢3 + ¢4 +
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¢5 + ¢6 + ¢7 + ¢8 = 8 from which we deduce the first row of R.

matrix.

1 1 1 1 1 1 1 1
8 8 8 8 8 8 8 8

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

1 1 1 1 1 1 1 1
4 4 4 4 4 4

_L _L L L L L
4 4 4 4 4 4

1 I 1 1

2 2

1 1

4 4

_L _L
4 4

L i i I
2 2 2 2

I 1 1 I

2 2 2 2

1 1 1 1

2 2 2 2

-i 1 i -1

2 2

1 1

2 2 2 2

1 I 1 1
2 2 2 2

i -1 -1 1

Defining

u=¢_ ,v =¢_ ,w=¢z

we have from Eqn. (B.14) that

R is the following

(B.16)

(B.17)

Here

u = x-=b_.Re
1 -.

V - bn • R'F
AV

Az--

_ =(o ,1 ,o ,o ,o ,_ ,_ ,,_¢)

(B.18)

(B.19)

(B.20)

(B.21)

_=(0,0,i,0,_,0,_,¢_) (B.22)

g_= (o ,o ,o ,1 ,,7 ,_ ,o ,_)

One can now rewrite Eqn. (B.5) as

where

and

6J _ -po[ffoo • R6¢ + "7. RTCR6v -']

/1 - ___._V_ _n _-_-_Wo_ b¢ ] df_= [-_Tgoob_+ +

(B.23)

(B.24)

(B.25)

(B.26)
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One can rewrite Eqn. (B.25) as

Ax

+
Ay

+
Az

(o, 1,o,o, o,L v,_-4)
(o,o,1,o,_,o,L q-()
(o,o,o,1,_,L o,T_) (B.27)

where fl is the volume of the region fl and the superscript bar denotes mean value,

e.g._

1
(B.28)

Similarly we have

C= flKD'.

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 _" 0 0 0

0 _' 0 0 0

o.( o o o

0 0 0 0 0

0 0 0 0 0

0 0 1 0

0 0 0 0 0

oo _ o U
0 0 0 0 0

oo _ o __
o o ,X o __2

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 1

o oo _

ooo _ _ _
0 0 0 0 0 0

0 0 0 _. _.2 _2.

0 0 0

0 0 0

0 0 0

0 0 0

U .( .U

tic .2 .2(

_¢2 .2_ _2_2

0 0 0

0 0 0

o _ _--(
0 0 0

o _( ¢K

0 0 0

0 (2 ¢(2

0 _ U( 2

0 0 0

0 0 0

0 0 0 0

_ o ¢-_
V E_o _,--_

0 _2.

0 0

0 _2.2

(B.29)
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In general fl is a subdomain of the box bounded by polygons consisting of parts of

subpanels and faces of the box. The mean quantities in Eqn. (B.27) and (B.29) can

in general be evaluated only by using complicated recursions best programmed on

the computer; see Section 2.3. However there are some special cases for which hand

calculations are possible. Let us assume that ft is a small subregion of the box which

is close to a corner, say corner 8. Then clearly the mean values on fl are almost the

same as the values at corner 8, e.g.,

1 1 1 (B.30), 7c=

Another case of interest is when fl is a rectangular region, e.g., the whole box, the

upper half, the lower tenth, etc. Let us assume that (2 is defined by xx < z < x2 ,

Yl <y<y_ ,zl <z<z_. Then the term_L-x7M-x(N-x is given by

= _L--'7M--xCN--1

= 1_ f. _L_,TM_IcN_ld _
1 [

_L-'7M-I(N-ld_
fn dft Jn

_ f:_2dx_l Z,_L_ldx. 1_l__dd_:2riM_ldy_/z:2¢N_ldzj_Y

1 1._.l__._f,_?rhM__dr/_c_@fCi_N_ld¢

1 _2L -- _1 L 7"]2M -- 7"]1M ¢2 N -- ¢1 N

L. M. N _2 - _1 72 - 771 C2 - C1
(B.31)

Case 1:

Now assume that 12 is the whole box, i.e.,

1 1 1 1 1 1

_2=_, _1=-7, 72=7, 71---_, ¢2--7, ¢1=-2 (B.32)

Clearly if.L, M or N is even, the mean value on the left of Eqn. (B.31) vanishes. The

only non-zero mean values in Eqn. (B.27) and (B.29) are then

1
_-r= r12= C_ =

12
1

_2_2 = rfl( 2 = C_2 _
144

(B.33)

Case 2:

Next assume that fl is only the upper half of the box. Then _2 = ½, it = 72
1 1

, '/1 - -_" , ¢2 = $ , el = 0, If L is even or M is even the corresponding mean value
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vanishes. However the same thing is not true for N. The non-zero mean values are

now

1

4
1

_2=V_=¢2 = __
12
1

¢_2 = C_2 =
48

1
¢2_2= ¢_V2= _V2 = __

144

Let us go back to Case 1 above and assume Ax = Ay = Az = 1.

Eqn. (B.33)into (B.27) and (B.29) we get

_==(o,u=,v=,w_,o,o,o,o)

and

C

00000000

01000000

00100000

00010000

l
0000_000

00000_00

1
000000_0

0000000_

Hence,

6J = po[AJ, + AJ 2 + AJ 3 -F �k J4 + �k J5 -t- AJs -Jr A J7 -t- AJs]

where

(B.34)

Substituting

(B.35)

(B.36)

(B.37)

AJl=6¢x(+b+_'_-+W_4 ¢,+¢43 ]'2 + ]'2 + ]'2" + ]'2)¢6Cz Cs

A J2 = 6¢2(- b + -_ +w_4 ¢23 + _" + ]'2 + ]"2 +]'2")¢3 Cs Cz Cs

A J3 = _¢3(-_ U_ Voo + __ + ¢2 ¢3 ¢5 ¢6 Cs4 4 12 3 + _" + ]'2 + ]'2)

A J4 = 6¢4(--_ + V_4 W_4 + ¢'12 ¢43 + ]._ + ]._ +].._)¢s ¢6 Cz

163



Aj, = + woo + ¢3 ¢, h)4 4 T_ -t- _+ 12 3 + 12

4 4 _-_-t- _-_ + 12 3 + 12

AJT = 5¢7(+ U_ V_ W_ ¢1 ¢2 64 ¢6 ¢_
4 4 4 +]-2+]-2+]-2. + 12 3

AJs = 5¢s( U_ Voo W_ Ct ¢2 ¢3 Cs Cs
4 4 4 ÷]_÷]'2÷]-2+ 12 3

The quantities inside the parentheses are the contribution of the box to the oper-

ators at each of the eight corner points respectively. For a uniform grid, each corner

point of the grid gets contributions to its operator from each of the eight surround-

ing boxes. Consider the center grid point in Figure B.2. For the box in the upper

right corner this point is local corner point number 1 and gets the contribution in

Eqn. (B.37) from the coefficient of _1" However for the box in the lower left corner

this point is local corner point number 8 and gets the contribution from the coefficient

of 5¢s. Note that if po is different in each of the eight boxes then we must add the

terms in parentheses weighted by each po. However let us assume M_ = 0 in which

case po = 1. Then when we add up all eight box contributions to the center grid

point we get the coefficients shown in Figure B.2.

Note that the terms in U_, V_, W_ all cancel out. This is due to the fact that

V • 17_ = 0. The operator coefficients in Figure B.2 are known as the Bateman

Laplacian, which is a second-order accurate approximation to _72¢. This is not the

same as the more diagonally dominant finite difference Laplacian (which we call a

"lumped" Laplacian) shown in Figure B.3. The 7-point Laplacian can be obtained

from a finite element point of view in a variety of ways. One way is to add higher

order terms to the trilinear basis function; see Section 2.3. Another way is to add

higher order terms to the Bateman principle itself. In the latter method one adds to
_J the term

1 Ax 2 2 AY 2, 2
[ g{--K-(y. +

AZ2 2

+ +

Ay2Az_ Az_Ax 2+ { 2 U_2 + 2 V_2

Ax _A y2 W*v 2} ]dQ
+ 2 (B.38)

These "lumping" terms are negligible to second-order so that they do not affect

the accuracy of the resultant operator.
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is

We leave it to the reader to show that the lumped formula analogous to Eqn. (B.37)

,5.] = po[AJ1 + A J2 + A J3 + A J4 + AJ_ + AJ_ + A Jr + AJs]

where

(B.39)

1 1 3 1 1 1AJ_ = 6¢_(+ U_¢ + 5V_o + _Woo - 5¢_ + _¢2 + 5¢3 + _¢5)

AJ, = `5¢,(+ voo+ 4 oo- 5woo+ _61 - _¢, + 5¢, + ¢,)

1U 1 1 1 1 3 4/x J, = `5¢_(-_ oo + 5Yoo - 5Woo + _¢_ + 5¢5 - _66 + ¢8)

i Iw iw. I i 3 iAJr=`5¢r(+4U°°-4 _¢-4 oo+5¢3+_¢s-5¢7+ Cs)

1 1 IW, 1 I IsJ8= `5¢8(-_u_- _v_ - 4 _ + _¢_+ _¢_+ _¢_+ ¢_)

Note that one can derive the coefficients in Figure B.3 by adding the appropriate

contributions from each of the eight surrounding boxes using Eqn. (B.39).
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B.2 TEST CASE

Now let us consider a test case, i.e., flow past a one panel thin wing at an angle-

of-attack. For simplicity a uniformly refined grid is chosen. The geometry is shown

in Figure B.4. The grid has the dimensions NX = 7, NY = 4, NZ = 4, and the

y = 0 plane is considered to be a plane of symmetry. The grid points are numbered

in increasing x, then y, then z order. The wing has a chord of 2.5 and a span of

3. A wake panel is attached to the trailing edge. The wing plane is z = 0. In the

bottom part of Figure B.4 we show the wing planform embedded in the grid, but

actually there are no grid points at z = 0, and the points shown should be considered

as projections.

Any grid box containing any part of the boundary surface is called a T-box. There

are 10 T-boxes in the example. Any connected portion of a T-box is called a D-

region. There are 14 D-regions in this example. The D-region numbers are shown

in Figure B.4. The ordering of the D-regions is somewhat arbitrary and depends

on which T-box is processed first and also on the panel normal direction. (In this

case the wing upper normal is in the +z direction and the wake upper normal is

in the -z direction.) Some T-boxes have one D-region and others have two. For

example the inboard T-box at the wing leading edge has only one D-region (D-region

1) because the wing does not fully cut the T-box in half. Consider D-region 4 as

shown in detail in Figure B.5. This D-region has a trilinear basis function defined by

Eqn. (B.14). However, the values of _b at the corner points below the wing cannot

be used in Eqn. (B.13) because the wing introduces a discontinuity in 05. Instead the

values of 05 below the wing are replaced by extrapolated values from above the wing.

These values are denoted by _b. We introduce an extrapolated _b any time a 05 is cut

off from a neighboring 05 in all four T-boxes adjoining the line segment connecting

the two grid points. Note that we do not introduce a V simply because the two grid

points are separated in some T-box. In the thin wing problem of Figure B.4, eight

_b's are introduced as shown. All lie on the plane of symmetry. The original problem

contained unknowns _bl through 05112 ordered in grid order. The _b's are considered

as additional unknown 05's, i.e., _bl = 05113 and _2 = 05114, etc. The corner unknowns

for D-region 4 are shown in Figure B.5. Now we proceed to derive operators for 4)so

and _bl. First we consider the contribution to these operators from D-region 4, i.e., a

formula analogous to Eqn. (B.37). (Remember 051,052, ...05s are the local box values of

_b here and should not be confused with the global numbering for the problem.)
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One can use Eqn. (B.34) in Eqn. (B.29) and Eqn. (B.27) to obtain

_J = po[_J_ + 6J2 + _J3 + _J4 + _J5 + _J6 + _JT + _Js]

where

(B.40)

Uoo Yoo _ ¢1 ¢2 ¢3+¢6 ¢7 Cs$J1 = _¢1(+-_- + _ + 12 48 48 _" + 57 + 57)

Yoo Woo ¢1 ¢2 ¢4 .gff ¢5 ¢7 ¢86J2 _5¢2(--_-_ + _ + 48 12 48 _" + _" + 2"4)

6Ja = 6¢3(-+ Uoo Voo Woo ¢1 43 ¢4 + Cs 46 Cs16 16 + 8 48 12 48 57 + 57 + 57)

6J4 = 6¢4( Uoo Voo Woo ¢2 ¢3 ¢4 + ¢5 ¢6 ¢716 16 + 8 48 4s 12 57 + 57 + 57)
Uoo Yoo Woo ¢2 ¢3 ¢4 ¢5 ¢8 ¢7 Cs

6J5=_¢5(+_-+ 16 8 +_+57+ 24 4 +_+_+i_ )

Yoo Woo ¢1 ¢3 ¢4 ¢5 ¢8+¢7 Cs_J_=_¢6(--_-+ 16 8 +57+_7+57 + 4s 4 _+_)

5J7 = 5¢z(-+ Uoo Voo Woo ¢I ¢2 ¢4 ¢5 ¢6 ¢7 + Cs16 16 8 +57+57+_7+_ + 12 4 _)

Uoo Yoo Woo ¢1 ¢_ ¢3 ¢5 ¢8 ¢7 Cs)_gs=_¢s( 16 16 s +57+57+57+i_+_ + 48 4
1

(Note that 12, the volume of the D-region is _- in this case.)

Now _bl is affected by D-regions 2 and 4. Because of the plane of symmetry one

should also add in the contributions of the reflection of D-regions 2 and 4 across

the y = 0 plane. For this purpose we simply reflect Figure B.5, i.e., in this case,

interchange ¢1 and ¢39, ¢2 and ¢40, ¢6o and ¢87, and ¢61 and ¢68. Thus for the

contribution of the unreflected D-region 4 to V1, we choose the contribution due to

6¢1 in Eqn. (B.40). However, for the contribution of the reflected D-region we choose

the contribution due to _¢3. Summing up all contributions, we get the operator shown

in Figure B.6. For comparison the operators generated in the code are also tabulated.

This printout shows the coefficients of the _bl operator ( INDOP=I ) located at grid

point 32 (LOCOP=32) due to contributions from 2 physical boxes ( NPRINT=2 ).

The freestream coefficients are the coefficients of Uoo, Voo and Woo, respectively. The

remaining coefficients correspond to the unknowns indexed on the left, respectively.

(The comparison between these formulas and those of the code are not exact, as the

code shifts the wing in the grid by a slight amount in order to avoid panel surfaces

landing right on grid lines. This shift also makes the ¢1 operator formula depend

minutely on some other unknowns due to the fact that a small amount of the wake

is shifted into D-regions 4 and 5. These minute quantities can be ignored).

The ¢1 operator has an interesting interpretation. Writing out the operator equa-

tions from Figure B.6 we have

1 o,.
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1 W
+1¢61+1¢66+_ ¢6_+1¢6s + 2 _

This equation can be rewritten in a more suggestive way as

=0 (B.41)

where

AxAyAz 1 +
[_z(D_ ¢, + woo)-

+3(D_¢6o + D_¢6o)+

2t (D=2¢1 + Dy _1)12

AzAyD=2D_2¢6o] = 0 (B.42)

etc...

D=+ _,1 -

Dr2_I =

2
D_ ¢1 =

_60 _ _1

Az

_ - 2_1 + ¢31

/kx 2

¢39 - 2¢1 + ¢39

Ay2
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38 0.53951E-06 39 -0.83334E-01 40 0.53954E-06

59 0.83335E-01 60 -0.84974E-06 61 0.83335E-01

66 0.83336E-01 67 0.16667E-00 68 0.83335E-01

113 -0.33334E-01 114 -0.41667E-01 117 -0.45336E-15

118 -0.42667E-10 121 0.49778E-I0 122 0.14222E-I0

Figure B.6: Operator Coefficients for _bl = ¢11a
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This is the way the equation would have looked had Az , Ay , Az been arbitrary.

Note that in the limit as Az --, 0 the equation tends to Dz+_l + W_ = 0, which

implies that the z velocity on the wing is zero, i.e., the wing is an impermeable surface.

Thus the _1 equation effectively imposes the appropriate boundary condition. To get

the operator for ¢60 we note that it has contributions from D-regions 2 and 4 as well as

the free space boxes 59 and 60 (all boxes are numbered according to the index of the

lower left corner point.) For free space boxes (i.e., boxes not containing a boundary)

we always use the lumped formula (B.39) so that away from the boundary we get

the 7-point Laplacian, consistent with the discrete Green's function. For D-regions 2

and 4 we choose the appropriate contribution in Eqn. (B.40) and for boxes 59 and 60

we choose the appropriate contribution from Eqn. (B.39). We must also include the

contributions from the reflections of all four boxes, as they lie on a symmetry plane.

The operator coefficients for ¢80 are displayed in Figure B.7 and compare with those

from TRANAIR shown also in the same figure.

For operators getting contributions from D-regions 6, 7, 8, 9, 13 and 14 the com-

putation gets more complicated because the boundaries involve a wake. Specifically

we have to add a surface integral to Eqn. (B.5) as in Eqn. (2.17) which is rewritten
in the form

J = J + a[h. W](A¢ - #) dE (B.43)

Taking a variation of the surface integral Eqn. (2.17) with respect to ¢ and assuming

incompressible flow we get

_J = po [ - a)

+ + + eL- Cu)
1 -,

+ -_(Vtr.fi+ P'L.h)(6¢L-_¢u)ldF_ (B.44)

Here _ is the upper normal on the wake. (In this case h points in the -z direction.)

l_u is V¢ evaluated using the basis function on the upper side of the wake and I_L

is V¢ evaluated using the basis function on the lower side of the wake. Note that

upper and lower mean the same thing as in PAN AIR. In this particular case they

do not physically correspond to upper and lower surfaces. The surface integral in

Eqn. (B.44) further requires the definition of how/_ varies in the wake. We assume

/_ varies hnearly from corner point to corner point. We leave it to the reader to

determine the contributions to the operators due to Eqn. (B.44).

Note that the _3 operator involves unknowns on the other side of the wake. This

is clear physically since the wake is a jump discontinuity surface rather than a solid

surface. It is also clear mathematically from Eqn. (B.44) where terms involving

products of upper and lower basis functions are present. The operators shown in

Figures B.6 and B.6 involve the unknowns #1 = ¢121 and /_2 = ¢122, the values of

doublet strength at the leading edge corner points of the wake network. #1 and

/_2 have their own operators, namely/11 should be the difference between the basis
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Figure B.7: Operator Coefficients for ¢60

175



fimction of D- region 6 and that of D-region 7 evaluated at the inboard wake leading

edge corner point. Similarly, #2 is the difference between the basis function of D-

region 13 and that of D-region 13 at the outboard wake leading edge corner point.

(Since there is no difference, #2 = 0 as it should be.)

The operator coefficients are displayed visually in Figures B.8 and B.9, and they

have an interesting interpretation.

In the same way as in Eqn. (B.42) the 03 and 0_ operators can be rewritten

suggestively in the form

AxAyAz
[ _--_(¢s_ - 07 + #1) + 3Du+/al

1D2
+ ]-_ _03+7D_¢62 1 2-sD 0,

1 _ 3%D_203 + _-_O_ 04

1 2 1 D 2 9D_t2¢s 3+ _Dv 461+_ _ ¢62+

18 =0 (B.45)

AxAyAz2 [ A---_(¢34- 03 - #1) - _Dul +pl

, ,_ , olD _20"t + 7 D _ 2¢ 34 - -_D _I20 4+

1 2 1 2 1 2
+ _-D_ 06+ _.D_ Cv + _.D_ Cs

1 : 1 2 1D2
+ "_Du ¢33-_" _D_ ¢34 "{- _ y _3.5,

1 1 1 218 Du2¢2 - __ Du203 - ]-_Du 04 ] = 0 (B.46)

Adding Eqn. (B.45) to (B.46) and ignoring higher order terms we get

/_xAyAz 1 ¢62 - 1/23 07 - ¢34]
2 " A-_z[ Az A'z = 0 (B.47)

In the limit as Az _ 0, this equation states that the z- velocity evaluated from the

upper and lower basis functions is the same, i.e., the normal velocity is continuous
across a wake.

Subtracting Eqn. (B.45) from Eqn. (B.46) and ignoring higher order terms we get

AxAyAz 2 r¢34 + ¢7 ¢62 + _1'3
ttl ] 0 (B.48)L2 Az 2 2 2

This equation states that the difference in potential between the two basis functions

evaluated at the wake plane is equal to the wake doublet strength. We see then that

the 0 equations give us the proper jump conditions across the wake.
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Figure B.8: Operator Coefficients for _ba = ¢ll_
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Figure B.9: Operator Coefficients for ¢7 = ¢119
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As a final comment to this section we note that the lumping terms of Eqn. (B.38)

can also be used in boxes which have D-regions to obtain a more diagonally dominant

operator. However, for consistency all surface integrals in the D-region must also be

lumped. As an example a surface term of the form

8J _ -po /E (h. t_)8¢dE (B.49)

must be augmented by the term

_Jextra-- -Po£[ n_ l(Ay2Uu_¢u + /kz2gz_¢z)

+ n_ _._(Ay2Az2Uuzg¢uz)

1(Az2yz6¢ z + Ax2V_¢_ )
+ n_ g

1

+ ,.,. _(/',x_Ay_w_,s¢_) ]d_
Do

(B.50)
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B.3 PRESSURE BOUNDARY CONDITION

In this section we discuss implementation of the pressure boundary condition Eqn. (2.7).

This boundary condition is generally imposed on wake sheets, which are wetted by

the flow on both sides. Potential is allowed to jump across these sheets, and the

value of this jump constitutes the degree of freedom which allows the imposition of

Eqn. (2.7). Because TRANAIR has its roots in the panel method [8], we call the

jump in potential across a wake 'doublet strength', and denote its value by #.

In order to discretize Eqn. (2.7) we define doublet strength at various point lo-

cations on the wake sheets and then impose Eqn. (2.7) at a like number of discrete

(but different locations). In Fig. B.10 we display a schematic of those wake surface

discretizations which are operable in TRANAIR. These discretizations are comprised

of networks of mesh points which are interpolated by the wake surfaces. The portion

of the surfaces interpolating four adjacent mesh points is called a panel. In Fig. B.10

the lines correspond to panel edges and their intersections to mesh points. The mesh

points are identified by a rectangular array of indices, (I=I,M) and (J=I,N), where I

is the row index and J the column index. The upper surface of the network is defined

to be that side whose normal corresponds (in a schematic sense) to the direction

® 20. It is useful to number the four network edges as shown in Fig. B.10. Discrete

doublet parameters are located at positions denoted by the solid dot. The doublet

strength on each panel is then obtained by bilinear interpolation. Pressure boundary

conditions are imposed at the locations marked by x's. Edge 1 (the leading edge)

is considered a special edge for each type of network. It is assumed that the mean

(average of upper and lower) tangential velocity enters the network along this edge.

Since the pressure jump condition will involve only derivatives of doublet strength,

constants of integration must be directly or indirectly specified along the leading edge

to fix the level of doublet strength along each streamline. Boundary conditions along

the leading edge are called Kutta conditions and their discrete locations are denoted

by the open dot.

Wake networks may abut other wake networks. In general, doublet strength must

be continuous, so it is essential to ensure that the doublet parameters along the edge

of one network match those along the edge of an adjoining network. Hence boundary

conditions along edges of some networks may be replaced by explicit doublet matching
conditions.

The network type designations (6,18 and 20) arise from historical considerations

involving the panel method [8]. Network type 6 is a full wake network, where the only

assumption required for its employment is that the mean flow enters the network at

the leading edge. Network type 18 is a special case of network type 6 where the doublet

strength at any corner point is assumed equal to that of the first point in the respective

column. This means that the derivative of doublet strength along panel column edges

is zero. In certain instances this implies that Eqn. (2.7) is satisfied automatically at

locations similar to the x's for network type 6, which results in substantial savings.

Generally one can employ type 18 networks in place of type 6 networks when the

mean flow is roughly in the direction of panel column edges and the difference in

total pressure and total temperature across the wake is not too great. Network type
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20 is a special case of network type 18 where the doublet strengths along the leading

edge are all identical to that at the head of the first column. Hence it is a constant

strength doublet network and contains no vorticity (or jump in tangential velocity)

at all. Network type 20 is generally used as a circulation carry-over wake rather than

to account for vortex separation. This is opposed to network types 6 and 18, where

the Kutta condition at the leading edges is intended to force vortex separation along

the line where these edges adjoin a solid body. (Note in this connection that the the

sheet vorticity vector ( is equal to h ® V/_).

The imposition of Eqn. (2.7) at the points denoted by × in Fig. B.10 is rela-

tively straightforward, but requires some care. For example, upper surface velocity

V,, and lower surface velocity V_ may be evaluated by differentiating the potential

basis functions on respective sides of the wakes. Then upper surface pressure p,, and

lower surface pressure Pt may be calculated from Eqn. (2.14), and substituted into

Eqn. (2.7). Formally Eqn. (2.7) does not involve #, and/_ is determined through its

appearance in the finite element operators (e.g. see Eqn. (8.45)). This leads to con-

ditioning problems since the number of doublet unknowns is unrelated to the number

of finite element equations. It is preferable to get/_ involved directly in Eqn. (2.7)

through its definition as the jump in potential. For this purpose we redefine the upper

and lower surface velocity vectors by the formulas:

1 --, I--. {'_'[_#-(l'P_,--Q)]}f_$_,: = _(V,, + Q) + _V# - .,.. - (B.51)
F_ "n

= _(V,, + Q)- _V/_ - _-- fi (B.52)
n.fi

Here, $_,, and Q are the upper and lower surface velocity vectors calculated by dif-

ferentiating the respective potential basis functions, but the (mathematically) equiv-

alent velocity vectors 1_ and Q' are used to compute p,, and p_. The quantity "_ is

the surface co-normal vector defined by

-, f ((1 - M_J)n:,n_,nz) linear flow

n= ]. _ non-linear flow
(8.53)

Note that

(= h ® (l_: - _') = h ® V#, (B.54)

i.e. the vorticity calculated from the velocities used in the pressure calculations is

a function of p only rather than dependent on the potential basis functions. In the

case where there are no total pressure or temperature differences across the wake,

Eqn. (2.7) implies

Hence,

v:= v,'land = p,. <8.55)
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=o,

where al_ ' -" l_l), A17' "' "' = 17,, I/V, = p, _.= + = vl- and #.
Assuming the wake is a stream surface relative to the mean mass flux, i.e.

(B.56)

(B.57)

we obtain the classical condition for determining wake doublet strength, i.e.,

ai,V. Vit = 0 (B.58)

Notice that if the panel column edges are aligned along al_, then It is constant along

these edges and a type 18 network may be employed as mentioned above.

In the case where there are total pressure and temperature differences across the

wake, then Eqn. (B.58) should be replaced by

al_'-VIt" = 0 (B.59)

Here l_" is defined by Eqn. (2.22). Although Eqn. (B.59) is no longer exact, it is

often a reasonably good approximation.

At Kutta condition locations we impose the following boundary condition:

#(¢o
1

It - (¢_ - ¢,) + [Vit - - ¢,)j = 0 (B.60)

Here t is a unit tangent vector lying along the local panel column edge, and e is

a small parameter which is chosen to be approximately equal to the local field mesh

size in the t direction. This equation guarantees that It is the jump in basis function

potential in the case where wake panels are denser than the field grid. The derivative

term is added in the case where the previous condition is redundant with respect

to the finite element operators. Then Eqn. (B.60) implies that the jump in basis

function velocity is well defined and finite.

We conclude by noting that all the analysis contained in this section is applicable

to the imposition of pressure boundary conditions on surfaces which are wetted by

the fluid on one side only. Such a boundary condition is often used in the design

mode, where pressure is specified and the surface is to be updated to be a stream

surface in the resultant flow. To modify the analysis it is only necessary to replace

the velocity _' by the velocity which would yield the desired upper surface pressure.
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Appendix C

GMRES

In this appendix the algorithmic details of GMRES are described. GMRES algorithm
is used as the iterative driver to to drive the residual to zero. Attention is given to

the concept of preconditioning and the role it plays in assuring rapid convergence.

The advantages GMRES enjoys over related methods such as conjugate gradients are

explored.

C.1 GMRES ALGORITHM

GMRES [53] is a method for solving nonsyrnmetric linear systems of algebraic equa-

tions. A modified version of GMRES which applies to nonlinear systems of equations

is described.

Consider a differentiable system

A(u) =0 (C.1)

of N nonlinear equations in N unknowns. The differential A(u; p) of A at u in the

direction p is defined by

A'(u; p)= lim A(u + ¢p) - A(u)
•-.0 C

(c.2)

For computational purposes, e is taken to be some small number and ensure that

the variables u and the component values of A(u) are reasonably scaled to permit an

accurate evaluation of A'(u; iv).

Given u '_, an approximate solution to Eqn. (C.1), one cycle of GMRES advances

the solution by first choosing k orthonormal search directions pl, _...pk as follows:

p_ = -A(u r') (C.3)

Normalize Pl

/91 (C.4)
P'- Itpl II
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For .7= 1,2,...k- 1 take

where

p +l = g(u"; - E bj pi
i=1

(c5)

so that

bji = (_(un; pj),pi)

Normalize Pj+I

Now update u _ using

(Pj+I, Pi) = 0 for i = 1,2, .... j

PJ+ (C.6)
PJ+'= IIpj+l II

k

u ''+1 = u n + _ ajpj (C.7)
j=l

The overall goal is to minimize A(un+X). To this end the coefficients a s are chosen to

solve the linearized version of the least squares problem

k k

II A(u") + __, aj_(u"; pj) II2 _ II A(u" + _ ajpj) II_
j=l j=l

= IIA(u'+_) 115 (c.s)

Aided by the orthogonality of the search directions pj, a modified version of the QR

algorithm described in [53] is used to solve this least squares problem.

One cycle of the GMRES algorithm is an approximation to one cycle of Newton's

iteration. Indeed with Newton's method one uses the linear approximation

A(u '_+' + p) _ A(u") + _(u"; p) (C.9)

to estimate a value of p which will enable A(u '_ + p) = 0. Eqn. (C.9) suggests that

the following linear equation be solved for p:

A(u") + _(u";p) = 0 (C.10)

The naive way to do this is to compute the entries of the N × N matrix associated with

A and directly solve the system of linear equations. This is enormously expensive if N

is at all large (as it is for all problems of practical interest). GMRES approximately

solves Eqn. (C.10) by finding the best possible solution over the k dimensional linear

subspace spanned by the search directions < pl, p2, ...pk >. Of course if k = N, then

GMRES would find the best possible solution to Eqn. (C.10) over the whole space

and would therefore compute the exact solution. Unfortunately this is every bit as

expensive as solving Eqn. (C.10) directly. The key to efficiency is to arrange for

GMRES to find a good solution to Eqn. (C.10) using only a small number of search

directions k. Preconditioning plays a vital role in achieving this goal.
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C.2 PRECONDITIONING

The available mathematical theorems [531,[88], as well as much numerical experience,

indicate that the rate at which GMRES converges, measured by the value of k required

to achieve a given level of accuracy, depends on the distribution of eigenvalues. The

more the eigenvalues are clustered together, the faster GMRES will converge. The

process of replacing a given problem with another equivalent problem (i.e., one with

the same solution) enjoying a more favorable distribution of eigenvalues is called

preconditioning.

Based on the observation that the identity operator has the most favorable dis-

tribution of eigenvalues (all the eigenvalues are clustered at 1), most methods for

preconditioning invoke an approximate inverse to the operator in the equation one is

solving. For example, if L is a linear operator and N -1 is an approximate inverse to

L then the problem

L(x)-b-O (C.11)

is equivalent to

N-I(L(x)-b) =0. (C.12)

In this case N is called a preconditioner for L. These equations have the same

solution, but GMRES will more readily solve Eqn. (C.12) than Eqn. (C.11) because

the eigenvalues of N-1L are more tightly clustered than those of L.

A formulation which allows GMRES to take advantage of preconditioners already

built into existing codes will now be described.

Given a problem of the form

A(u) =0 (C.13)

most computer codes have a method M which takes a good approximation to the

solution of Eqn. (C.13) and creates a better approximation. Typical methods M

might, for example, involve SLOR, ADI, a time marching scheme or even multigrid.

Whatever the method, M already invokes an approximate inverse to the operator in

Eqn. (C.13). The standard procedure for updating u is

u"+' = M(u") (C.14)

Convergence is achieved when u n+l = u n. Thus solving Eqn. (C.13) is equivalent to

solving

u-M(u)=O (C.15)

Applying GMRES to the preconditioned Eqn. (C.15) is more effective than applying

GMRES to Eqn. (C.13) directly. Applying GMRES to Eqn. (C.15) is often consid-

erably more effective than employing the standard iteration procedure Eqn. (C.14)

[54].

187



C.3 GMRES AND SIMILAR METHODS

As shown above, one cycle of GMRES finds the best possible solution to the following

linear equation for p:

a(u") + A'(u'_; p) = 0 (C.16)

over a k dimensional subspace < Px,_, ...Pk >. In GMRES the search directions

are chosen to be orthonormal. An alternative method ORTHODIR, chooses the search

directions to be AA T orthogonal, i.e.,

i # j (C.17)(-_(u";pd,ff(_,"; pj)) =o,

ORTHODIR computes the k search directions as:

Pl = -a(u")

for j = 1,2, ...k - 1 take

J

Pj+x = vj + y_ bjipj
i=1

where

(-_(u"; v_),ff(u";p_))
b_,= (_(u-; p_),_(u-; v_))

The coefficients bji are computed to enforce Eqn. (C.17). As in GMRES, ORTHODIR

updates u using the formula

k

u,.,+ 1 = un + _ a.ipJ
3=I

where the aj are chosen to solve the linearized least squares problem

k k

II A(u") + __, ajTi(u";pj) II5 _ II A(u" + Y_ ajpj) II5
j----1 j=l

= IIA(u"+l) II2 (C.18)

Now because of Eqn. (C.17) this least squares problem can be explicitly solved:

(A(u"),_(u";pj))

a, = -(_(u-; p_),_(u-; p,))

It can be easily shown that the search directions generated by ORTHODIR span

the same k dimensional subspace as those generated by GMRES. Therefore GMRES
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and ORTHODIR are mathematically equivalent. Since ORTHODIR solves the least

squares problem more conveniently, ORTHODIR would appear to be preferable to

GMRES. However, ORTHODIR requires that both the search directions pj and the

vectors A(u_; pj) be stored. Also ORTHODIR uses 2k evaluations of A. GMRES on

the other hand requires only k + 1 evaluations of A and that only the pj be stored.

(The solution to the least squares problem Eqn. (C.8) presented in reference [53]

makes use of Eqn. (C.5) which expresses A'(u";pj) as a linear combination of the

search directions pj, eliminating the need to explicitly store the vectors A(u_;pj)).

Thus GMRES requires only about half the storage and half the number of function

evaluations as ORTHODIR. Moreover, evidence is given in reference [53] that GMRES

is less subject to numerical problems. Of all the methods for solving a nonsymmetric

linear system of equations based on the idea of finding the best possible solution over a

k dimensional subspace (ORTHOMIN, ORTHORES and ORTHODIR are compared

in reference [53]), GMRES appears to be the best in terms of storage, operation count

and numerical stability.

For problems involving symmetric positive definite matrices, algorithms more effi-

cient than GMRES exist. Consider the linear system

Sx=b

where S is a symmetric positive definite matrix.

method employs the following relations [88]:

Choose: Xo

(C.19)

The CR (Conjugate Residual)

Set: ro = b- Sxo

and p0 = r0

Now recursively use

=
xi+l = xi+alpi

r_+l = ri-- aiSpi

(ri+l, Sri+l )
bi =

Pi+_ = ri+l + bipi

It then follows [88] that

and that xk minimizes

(Spi, Spj) = O for i#j

II - b II

over the k dimensional affine space Xo+ < po, pl, ..-pk-1 >.
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Thus CR operates very much in the same spirit as GMRES (in fact for symmet-

ric positive definite linear systems they are mathematically equivalent), but explicit

orthogonalizations such as Eqn. (C.5) and the need for solving the least squares prob-

_em (C.8) are avoided. Moreover storage is required for only the 5 vectors x, r, St, p,

and Sp. This compares very favorably with the k + 4 stored vectors required GMRES

(typically 20 vectors).

Another algorithm for solving Eqn. (C.19) is Conjugate Gradients (CG). It uses

the relations [88]:

Choose z0. Set

and

Now recursively use

ro = b - Sxo (C.20)

Po = ro (C.21)

ai
Sp )

xi+l = xi -F aiPi

ri+l = ri -- aiSpi

(ri+,,ri+,)
bi =

(ri, ri)

Pi+l = ri+l -- bipi

It then follows that [88]

(Pi, SPd) = O for i_j

so that the search directions are (by definition) S orthogonal (conjugate) to each

other. Also if y is the exact solution to Eqn. (C.19) then zk minimizes [88]:

IIy- x II

over the k dimensional affine space x0+ < p0, _, ...pk-1 >.

Again CG enjoys enormous advantages over GMRES in terms of storage and opera-

tion count when applied to symmetric positive definite linear systems. Unfortunately

many of the advantages of CR and CG disappear when applied to nonsymmetric

problems. Let G be a general (invertible) nonsymmetric matrix. Then

Gx =b

can be solved with CG or CR if one considers

(c.22)

G'Gx = G'b (C.23)

This involves the added expense and inconvenience of computing the adjoint op-

erator G'. The adjoints of any preconditioners must also be computed. This could
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be nearly impossible if multigrid is used as a preconditioner. The elegant formula-

tion shown in Eqn. (C.15) which allows GMRES to be immediately retro-fitted to

existing codes is lost. Also the eigenvalues associated with Eqn. (C.23) are more

spread out than those of Eqn. (C.22). Indeed the eigenvalues of G'G are the squares
of those of G. This means that more iterations are required to solve Eqn. (C.23)

than to solve Eqn. (C.22). In fact conjugate gradient applied to Eqn. (C.23) with a

basic underlying iterative method as preconditioner is often no faster than the basic

underlying method, making acceleration of Eqn. (C.23) with any Krylov subspace

method a hopeless cause. In view of the difficulties associated with applying CG or

CR to Eqn. (C.23) one must ask how much does it really cost to apply GMRES to

Eqn. (C.22) directly. In a typical application, the cost of GMRES turns out not to

be too burdensome. The operations required by GMRES are fully vectorizable over

vectors of length equal to the number of unknowns in the problem and are therefore

capable of efficient implementation. For these reasons it is believed that in most cases

applying GMRES to Eqn. (C.22) is preferable to using CG or CR on Eqn. (C.23).
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Appendix D

POISSON SOLVER

D.1 SUMMARY OF THE POISSON SOLVER

The Poisson solver, denoted by T -1, computes the perturbation potential ¢ from a

given source function Q in a manner that automatically imposes the proper boundary

condition at infinity. The computation of T -1 (Q) is based on the discrete convolution,

G,Q, of the sources Q with the discrete free space Green's function G. To get T¢ = Q,

the function G must satisfy

1 at(0,0,0)
(TG)(i,j,k) = _(i,j,k) = (D.1)

0 everywhere else

In addition G must satisfy a discrete far field boundary condition. It is sufficient to

require that G be asymptotic to the continuous free space Green's function -1/(4_'r)

as r _ co . In fact G may be approximated to arbitrary accuracy as r ---* oo by an

asymptotic expansion of the form

4zr + _'_ + _g" +"" " (D.2)

Here r/n -- r/,_(u, v, w, Ax, Ay, Az) where

(u,v,w)= (i_x, jAYr ,kAZ)r and r={(iAx'jAy'kAz)l" (D.3)

A general recursion formula (D.42) for the asymptotic coefficients r/,_ was derived

after considerable effort. James' attempt [89] to derive the r/3 formula was consistent

with the Poisson operator but not with the "recursion" relations (D.11) that G must

satisfy. The MIT computer algebra program MACSYMA was helpful in evaluating

r/s and the corresponding downstream Green's function calculations.

The Poisson solver permits symmetry about the y and z planes j = 0 and k = 0

and automatically includes downstream sources. These are the sources on the down-

stream (m=) plane of the computational box R. They are interpreted as extending to

infinity in the x direction, so that wakes are automatically extended outside of R. A

193

PRECEDIi'_G PAGE BLANZ _or FirMED



corresponding downstream Green's function Gd, see (D.4) below, is computed along

with the regular Green's function G. A correct solution requires that the downstream

sources sum to zero; otherwise the solution is theoretically infinite everywhere, though

in practice small deviations from the zero sum are tolerable.

The James algorithm, see section D.1.2 below, is used for the convolution. For

an N 3 box, the real operation count of the TRANAIR implementation is (116 +

10 log_ N)N 3 + O(log 2 N)N 2. In practical cases the O(log 2 N)N 3 asymptotic term

is dominated by the large O(N 3) term, and the O(log 2 N)N 2 term is significant in

small cases. As the result of a considerable programming effort, the code is typically 2

times faster than a comparable implementation of the standard convolution algorithm,

whose operation count is (72 + 35 log 2 N)N 3. The Poisson solver achieved a rate of

480,000 grid points per second, or about 85 MFLOPS, on one processor of a Cray X-

MP for a grid with dimensions (m_, rnu, mz) = (160,150,27).

The memory requirement of the Poisson solver (including Green's function) is

N 3 + 51N 2, which is N 3 asymptotically but closer to 2N 3 in practice. This is due

to the many scratch planes required for good vectorization of the dominant phase 2

of the algorithm. An earlier code, which was closer to James' technique, used much

less memory in phase 2 but was much slower and more complicated. The standard

algorithm uses 2N 3 + 23N 2 words, which is asymptotically twice as much but is less

than 1/3 more in typical cases.

Radix 2,3,5 FFT's (Fast Fourier Transforms) are used to achieve more flexibility

in choosing (rnz, my, rnz) than the traditional radix 2 FFT, permitting a smaller

computational box.

D.I.1 Summary of the Green's Function Algorithm

Buneman [90] found an analytical method for generating the 2D discrete Green's

function in the case Ax = Ay. For the 3D case a new, semi-analytical method has

been developed for arbitrary Ax, Ay, Az. This method may be adapted to 2D and

to higher dimensions as well.

The basic idea is to first compute Green's function data on the boundary of the

box R and then solve for G in the interior by FFT techniques for a Poisson boundary

value problem (see section D.3.1). Neumann boundary value data are used because

a Neumann boundary value problem is solved by cosine transforms. For data that

is symmetric about the origin on each axis, as it is for G, cosine transforms give the

DFT of the solution. It is actually the DFT of G, denoted by G, that is needed for

the convolution. Thus by solving a Neumann boundary value problem, G itself need

never be computed, only G.

Symmetry determines the Neumann boundary data to be zero at the three bound-

ary planes of R through the origin: i = 0, j = 0, and k = 0. The hard part is, of

course, the boundary data for the three exterior planes i = m,, j = my, k = mz.

The boundary data for the first of these planes, for example, must be computed as

(G(m_ + 1,j,k)- G(m_- 1,j,k))/(2Az), cosine transformed in j and k. If m_ is

large, this may be computed accurately by the asymptotic expansion (D.2). For this

reason the problem is first reformulated, if necessary, for a large box, whose dimen-
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sions depend on the available scratch memory and on an attempt to equalize the

radial dimensions ra, Az, mvAy, and m,Az. Then this large box Neumann problem

is partially solved to get the desired boundary data for the given box R.

The total CPU time for computing the Green's function data is less than .2 seconds

using 100,000 words of scratch memory, corresponding to an operation count of 18

times the volume of the large box. This time is trivial since this data is computed

only once and stored, to be read back at each subsequent call to the convolution

algorithm. The data is accurate to about 9 or 10 significant digits, degrading only at

high ratios of the deltas. The convolution algorithm preserves this accuracy.

The downstream Green's function Ga is defined by

Gd(i,j,k): _ G(e-i,j,k). (9.4)

Formula (D.4) is derived from the requirement that if Q(i, j, k) = 0 for i < rn_ and

Q(i,j,k) = r(j,k) for i >_ ms, then

(G * Q)(i,j,k) = (ae(i,.,.) • r)(j,k).

The portion of each sum (D.4) outside the large box is computed by the Euler-

Maclaurin formula for an infinite sum, with G evaluated by the expansion (D.2).

Each such sum actually has an infinite part (see section D.2.4). But this part may

be subtracted off because it is asymptotically equal for all (j, k) and will disappear

upon convolution with the downstream sources, provided that they sum to zero.

The result of solving the Neumann problem for G is a simple algebraic formula in

terms of three planes. These are the cosine transforms of the three exterior planes of

boundary data (see section D.2.3). For Ge, four planes are required since there is no

symmetry in the x direction. Evaluation of these formulas typically adds about 5%

to the CPU time of a convolution if there is no symmetry but saves two grid boxes

of memory. If there is both y and z symmetry, the cost may rise to 25% of the CPU

time but save eight grid boxes of memory.

D.1.2 Summary of the Convolution Algorithm

The procedure developed by R. A. James [89] is based on the decomposition of the

perturbation potential _ into an "interior solution" 0 and an "exterior solution" $,

mediated by a "shielding charge" function _r. That is, write the Green's function

solution _b= G * Q to the Poisson equation T$ = Q in the form

e=0+_

where 0 and _k are defined by

TO = Q inside the box R with

0 = 0 on the boundary OR and outside R, and

_b = G,cr for

a = Q-TO

# 0 only on OR.

195



Intuitively, the interior solution 0 would result if the sources in R were shielded from

everything outside by a wall at OR, for example. Subtracting a from the given sources

Q on OR gives induced sources, or charges, TO on OR. By definition these charges

have the same effect as a wall, hence the name shielding charge function. The exterior

solution is so called because it incorporates the "exterior", or free-space, boundary

condition.

A mathematical proof for the correctness of this decomposition is given by the

following algebraic argument. Let 0 and Q be functions defined on the 3D grid that are

zero outside R and define a = Q - TO and _., = G * a. Then the discrete convolutions

G * Q and G * o" are finite sums, and it is easy to verify that G * (TO) = T(G * 0).

Hence

¢=G,Q=G,(TO)+G,a=T(G,O)+_=O+_. (D.5)

This algorithm involves three phases. For phase 1, solve TO = Q inside R given

0 = 0 on OR and calculate a = Q - TO, which is nonzero only on OR. For phase 2,

compute ¢ = G * a on OR by the standard convolution algorithm (described below).

For phase 3, complete the computation of _ by solving another Dirchlet Poisson

problem: T_ = 0 inside R given $ on OR.

The efficiency of this algorithm comes in part from the fact that phase 2, G * a,

is much less work than G * Q if done intelligently. Likewise, in phase 3 it is possible

to take advantage of the zero interior sources. There is also a way to do the last

part of the Dirichlet Poisson algorithm only once, instead of twice. Finally, the

Dirichlet procedure is very efficient since it uses FFT sine transforms and a special

tridiagonal solver (section D.3.1). Where there is a plane of symmetry, a mixed

Dirichlet-Neumann problem results. This requires the use of "shifted sine or cosine"

FFT transform algorithms to replace the sine transform (section D.3.2).

The standard FFT convolution procedure for G * Q would be to apply FFT's in

the x, y, and z directions to G and Q, multiply these complex results pointwise, then

inverse transform. For this to be correct, both G and Q must be doubled in size along

each axis, and this extension must be zero filled, with FFT's for these doubled lengths.

The reason for this is that the FFT actually implements a "circular convolution"[91].

The zeros guarantee that this convolution equals the standard linear convolution.

The standard algorithm is adapted to phase 2 of the James algorithm in the fol-

lowing way. Since a is restricted to OR, only the 6 boundary planes of R need be

transformed directly. Then & is constructed from these 6 planes, an xy plane (com-

plex and quadrupled in size) at a time, along with the corresponding plane of G. The

values in these two planes are multiplied, and summations specified by the inverse

transform formula are performed to get 6 output boundary planes. At the end, the

inverses of the initial transformations are applied to these 6 planes. See section D.3.3

for explicit formulas for handling the 6 planes.
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D.2 THEORY OF GREEN'S FUNCTION AL-

GORITHM

D.2.1 The Green's Function Definition

The Green's function G must satisfy the discrete Poisson equation

= j, k) (D.6)

where

D2a(i,j,k) =

+

+

G(i + 1,j,k) - 2G(i,j,k) + a(i- 1,j,k)

Ax 2

G(i,j + 1, k) - 2G(i,j,k) + G(i,j - t,k)

Ay 2

G(i,j,k + 1)-2G(i,j,k)+G(i,j,k- 1)

Az 2

In addition we assume that G satisfies a free space boundary condition of the form

(D.7)

where K is a constant to be determined, (x,y,z) =(iAx, jAy, kAz), r = I(x,y,z)],

and f has continuous partial derivatives with asymptotic condition r2Vf -,_ 0 when

r ,-_ _. Here "x -,_ 0" means that x is infinitesimal (in the sense of nonstandard

analysis[92]), "x -_ c_" that x -1 _-, 0, and "x -,- y" that x - y ,-_ 0.

Mathematically it is not clear that a solution to (D.6) and (D.7) even exists, or if

one exists, that it is unique. Therefore it is better to define G in a way that makes

existence obvious, and then derive (D.6), (D.7), and show uniqueness. The form of

the free space condition (D.7) permits a straightforward uniqueness proof (later in

this section).
First define the discrete Green's function as the coefficients of a certain 3D Fourier

series:

G(i,j,k) = _ ,_ ,_ ,_ h(c_,13,3`)

where

4 sin2(a/2 ) 4 sin2(_/2 ) 4 sin2(3`/2) (D.9)
h(a, _, 3`) = Ax 2 Ay2 Az 2 "

The function h -1 is singular at the origin, but this singularity is integrable by changing

to spherical coordinates 0, ¢, p, since the Jacobian is O(p 2) and h(a, Z, 3`) = O(P 2) for

p ,,, 0 + . Therefore, according to Zygmund[93], the 3D Fourier series with coefficients

G converges to h -1 in the L 1 norm, and also almost everywhere in, for example, the

following form of "Abel convergence"

h-X(a,/3, 3') = lim _ G(i, j, k) e (ic'+j_+k'v)i r [i[+ljl+lk]. (D.10)
r--l- i,j,k
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That the definition (D.8) satisfies the Poisson equation (D.6) is easily verified by

calculations such as the following.

exp(j + 1)¢3i - 2 expj/3i + exp(j - 1)/3i

= (exp_3i +exp(-¢3i)- 2)expjl3i

= 2(cos(f3)- 1)expjfli

= -4sin2(/3/2) expj[3i.

Other important properties of (D.8) are the recursion relations:

G(i+l,j,k)-G(i-l,j,k) G(i,j+l,k)-G(i,j-l,k)

iAx _ jay2

(D.11)

a(i,j,k + 1)-a(i,j,k- 1)

kAz 2

These are verified by using integration by parts to reduce each of the three differences

to a common value. For example, the first difference in (D.11) may be integrated by

parts in c_ to give

1 ,r In h(a, 13, 3') e(i_+J_+k'0i da d/3 d 7
871.3 _r 7t" _r

since exp(i + 1)cd-exp(i- 1)_i = 2isin(o_)expic_i = -Ax2ih,_expi_i from (D.9).

These relations are first order finite difference analogs of the differential relations

1(1) y1(1) 1(1)
X x y Z z

If the definition (D.8) is interpreted as an iterated integral, one of the three in-

tegrals may be done analytically. For example, suppose that k > 0 and do the 3'

integral by writing it as a contour integral along the infinite rectangle in the upper

half complex plane from -a" + eel to -lr to +lr to +_" + o¢i and back. Except for

(_ =/3 = 0, there will be exactly one pole inside the contour. This is at the point 70i

which satisfies h(c_, /3, 700 = 0. Its residue is given by

1 Az2i

h,(a, _, 3'oi) 2 sinh(7o)

where (D.9) shows that 70 = 7o((_, fl) is defined by

Az2 • 2 Az2 • 2

sinh2(7o(a,/3)/2) = _-z2 sin (c_/2) + _-_y2 san (/3/2). (D.12)

Therefore the triple integral in (D.8) may be reduced to the double integral

Az 2 [" /'_ exp{(ia + jl3)i- kT0(a,/3)}

G(i,j,k) = 8_r2 J-,, J-,, s5_£_-_ dadfl

(D.13)

f./"= [,,i,,, exp{((,,X+ ,,,/,)/-w<;),-}
8r 2 J-,/a: a-,qau sinh(7)/Az d,_ d_,
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where (u, v,w) = (x/r, y/r, z/r), "),= %(a,_), and (X,_b,_') = (a/Ax,3/Ay,_/Az)

are normalized coordinates. Numerical integration of (D.13) is possible, but expensive

for large i, j, or k.

That the free space condition (D.7) is satisfied by definition (D.8) follows from

the development of the asymptotic expansion of (D.13) later in section D.2.2. It is

already obvious from (D.8) that G is infinitely differentiable as a function of x, y, z

so that the function f in (D.7) has the required smoothness.

Now let us present the uniqueness proof for condition (D.7). The proof is based on

the discrete divergence theorem. Let g = (gl, g2, g3) be a function defined on a grid

box R = Ibm, e::] × [bu, %] × [b,,e,]. Also let D! = (DI1, DI2, DI3 ) denote the forward

difference operators in x,y,z; e.g., (Dl,)gx(i,j,k) = (g,(i + 1,j,k)- gx(i,j, k))/Ax .

Then just do all possible cancellations to get

E
i,j,ke_

E
j,ke_,

+ E
i,kE R°_:

+ E

(D/ . g)(i,j,k) AxAyAz =

(gl(e.,j,k)-gx(b. + 1,j,k))AyAz

(gz(i,j,e.)-gz(i,j,b. + 1)) AxAy

where R ° = [b_+ 1,e_- 1] x [bu+l,%- 1] × [bz+ 1,e=- 1], etc. This statement

may be abbreviated by letting AS represent the boundary deltas, AR = AxAyAz,

and n = the outward unit boundary normal vector, to get

y_DI.gAR= y_g.nAS.
I_ ott o

(D.14)

Now let (e_,ev, e, ) = -(b_,b_,b.) = (n,n,n) and apply (D.14) to the backward

difference operators DbG = (Dbx, Db2, Db3)G, defined by (Dbx G)(i, j, k) = (G(i, j, k) -

G(i- 1,j,k))/Ax, etc. By (D.6) and (D.14) the result is

&R = _ D2G AR = y_ DbG . n AS
Ro OR o

= 8 Db, a)(n,j,k)AyAz
L._=ok=o

/ !

n--X n--I

+ E __, (Db2G)(i,n,k)AxAz
i=0 k=0

n-l_n-l_ ]
+ E _ (Dbaa)(i,j, nlAxAy .

i=0 j=O

1
where _' denote a summation with a factor of _ on the summand for the xxxx xxxx of
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integration. Next apply Taylor's theoremwith remainderto (D.7) to get, for example,

(Dbaa)(n,j,k) = K --_7+ Vf

where the right side is evaluated at some point between (n- 1,j,k) and (n,j, k).

When summed over the boundary the Vf term drops out for n ,-, oo, since r = O(n)

and r2Vf ,._ 0 by assumption. That is, the constant K is determined independently

of f by summing the O(1/r 2) terms over the boundary.

Next we show that f in (D.7) is uniquely determined by another application of

the discrete divergence theorem. Suppose that f and f' are two different functions

satisfying (D.7) and let g = f - f'. If Dfg = 0 everywhere, then g must be constant,

and by the r2Vf ,,, 0 condition this constant must be zero. Therefore we may

assume, for example, that (Dflg)(i',j*,k') 75 0 and define h(i,j,k) = 0 if i <_ i" and

h(i,j,k) = Az if i >_ i* + 1. Now apply (D.14) to (Dbg)h to get

D] . [(Dbg)h]AR = _ h(Dbg) . nAs ,-, 0
R o OtO

since r2Dbg ,._ O. On the other hand, simple algebra gives the following product rule
for discrete differentiation

__, D] . [(Dbg)h] AR
Ro

= _-_(D2g)hAR+ __,(Dlg).(DIh)AR
R o Ro

= 0 + (D]lg)(i',j',k')AR#O.

This contradiction proves that g _= 0, hence the uniqueness of f.

There is a condition equivalent to the traditional free space condition (D.7) that

is more natural from a mathematical point of view. Simply assume that the Fourier

series (D.10) converges in the L 1 norm. Then we demonstrate that the full series con-

verges in L 1 to h -1, hence that (D.8) holds by Fourier series inversion. For notational

convenience, the argument is illustrated in the y dimension, though at least three

dimensions are required for correctness. First scale the Poisson equation by rlJleJOi,

and sum over j, using (D.6),(D.10), G symmetry, and trig identities to get

OO

1 = _ (D2G)(j)rlJle j_i
j_- --00

= 2(G(1) - G(0)) + 2 _(a(j - 1) - 2a(j) + a(j + 1))rj cos j
j=l

= 2 a(1) - g(r,Z) + _ a(j)_ _÷1cos(j + 1)Z + _ G(j)r _-1 cos(j - 1)8
j=O j=2

= ((r + r-1)cos_ - 2) g(r,Z) + (r-' - r)(sinfl)[7(r,Z) + (r- r-')(cosZ)G(0)

where g(r,_) = Ej G(j)rl_le j_i and ._(r,_) = 2Zj_I G(j)r'isinjfl. By assumption

both g(r,y) and h(r,y) converge in 51 to limits g(¢/) and _(_) as r _ 1-, so g

satisfies 1 = 2(cos(_)- 1)g(fl) = -4 sin2(_/2)g(fl) almost everywhere.

It can also be demonstrated directly from corresponding Fourier integral results

that all terms of the asymptotic expansion (D.2) have Fourier series, in the sense of

(D.10), that are L 1 summable.
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D.2.2 The Asymptotic Expansion

There are two ways of deriving the asymptotic expansion. One way is to apply

the appropriate integration techniques directly to the double integral (D.13) above.

Another way is to assume the form of the expansion, plug this into the Poisson

equation (D.6) and the recursion relations (D.11), and use Taylor series.

The first approach demonstrates the existence of an asymptotic expansion of the

Fourier series definition (D.8). In particular, it establishes the free space condition

(D.7) and the value of the scale factor. Then by the uniqueness argument in sec-

tion D.2.1 above, the second approach is justified. The latter method is algebraically

easier.

First Approach

In the first approach, the X, _ coordinates of the double integral (D.13) are trans-

formed to polar coordinates 8, p. Asymptotic evaluation of (D.13) reduces to the

computation of

fo _" fo p. e-('_:(p'e)-q(°)pi)"I(x,y,z) = sinh(_/(p,O))/Azpdpd8 (D.15)

where r --- oo, p" > 0 with p* _ 0, and q(8) = ucos(O) + vsin(O). That is,

r"(G(i,j,k) + (AxAyAz/8r2)I(x,y,z)) "_ 0 for all finite n > 0. Note that w > 0

was assumed in (D.13).

To evaluate the inner integral, change the radial coordinate p to the complex

coordinate

v = u(p,O) = wC -qpi

dv = (wCp - qi)dp.

(D.16)

To get (p, differentiate (D.12) and use the notation s: = sinh(-y)/Az,

s. = sin(_)/±x, c. = cos(s), s_ = sin(_)/ay, c_ = cos(Z),
s8 = sin(O), t(p,8) = s=co + s_se, and D(p,O) = wt- szqi. Then

c= = cosh(7),
co = cos(0),

t s_ t (D.17)¢_=-, p'(_)= _, _'(_)= _.
•S z

Thus from (D.15)

f02_f0 _" P (D.18)I= e-_fe(v)dvd8 for re(v)= -_.

Now the asymptotic expansion is obtained by applying integration by parts re-

peatedly to the inner integral of (D.18):

)I E :_°-'(o+)d°= _+R_
n=l rn

(D.19)
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with remainder

(J0J: )2_ 1

Rrn = e-vrf_N)(.) dudO r--F

and f(_')(0 +) - limp_o+ f(n)(u(p)). It is not immediately clear that any terms of the

expansion (D.19) are finite since it has not yet been shown that the limits f_")(0 +)

exist and are integrable in 0. In fact we will demonstrate that f_n)(v) is uniformly

bounded on [0,2rr] × [0, v'] by showing how to compute the limits. Thus R,, =
O(I/_N+').

Let us begin by calculating the first asymptotic term to get the constant K in
(D.7). Note that for p ~ 0 +

t S z
(f(v)) -I = w---

P P

from (D.18), (D.17), and (D.12).

(1 - w2) 1/2 cos(0 - 00) for 0o = tan-l(v/u). Therefore

so from (D.13)

qi ~ w(c_+ s_)- ¢-qi~ w- qi
P

fo_'/o(O+)dO

(D.20)

Next note that q(O) = (u 2 + v2) 1/a cos(0- 0o) =

= fo 2'_ w+ q(0)i dO
w 2 + q2(O)

fo_- w+ cos(0)(1- w_),/_i= w 2 + (1 - w2)cos2(0) dO

,q2 dO= 4w

,,o cos_(#) + w2 sin2(0)

'/_ sec_(O) dO= 4w 1 + w atan2(O)

fo _° dx= 4 i¥.z-2,,

Next consider the first derivative term.

D/p ~ W for p -._ 0 + by (D.20). Then

and by (D.17)

(D.21)

AxAyAz

4r

Use the notation W = w- qi, so that

f, _ p' pD' _ p'- fD' (D.22)
D D 2 D

])l ~ W-1

= p'~ w-'
_' .., (c_ + s_)/(D/p) ~ W-'

so

D' = wt'- c_'qi ~ (w-qi)/W-1

' ~ W-x _ W-1p - fD' ~ O.

(D.23)
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Therefore a versionof L'Hospital's rule may be applied to evaluate (D.22):

f, p"- f D"- f'D' f, 1 (p,,
~ D' or ~ _ - fD"). (D.24)

This version may be stated in the following way. If h(x)g(x) = f(x) for g and f

continuous on [0, z'] with g(0) = f(0) = 0, and f and 9 continuously differentiable on

(0, x') with if(x) = fx(z) + f2(z)h(x) and such that the limits g'(0+), fl(0+), f_(0 +)

exist and g'(O +) - f_(0 +) _ 0, then h(0 +) exists and equals fl(O+)/(g'(O +) - f2(0+)).

The usual proof by the mean value theorem applies.

Now by (D.23)

D" = wt" " "-- Szql

,,, - + + +
s: = -Sz_Z2(¢') _+ cz¢" ~ ¢".

It

~p

(D.25)

Using (D.17), (D.23), and (D.25) and applying L'Hospital's rule again leads to simul-

taneous equations for p" and _'":

p" ~ (,s".- p'D"- p"D') /D'
~ C- W-' (wp"- ¢"qi) - p"

_" ~ (t"-_'D"-_"D')/D'

~ p"- W-' (wp"- _"qi) - _"

(D.26)

Since these equations are homogeneous, they may be solved to get p" ~ _" ~ O.

Hence f_(0 +) = 0 by (D.24) and (D.25). To solve for f_'_)(0 +) when n _> 2, simply

generalize the method used for the first derivative term. Assume by induction that

the limits exist at v = 0 for f(J), p(j+l), and ((j+l) when j = 0,..., n - 1. Then the

t {j+l) and D (_+1) limits also exist, as in (D.25). To derive the formula for p{,,), note
that

p(") = (f D)('_) = f(J)D('_-.i)
j=O J

so the fOOD limit exists and

f(n)D = p('_) - F,, - nf('_-l)D '

for (D.27)

F, n f(j)D(n_j)= ,_
j=O

Also assume by induction that the fl")D limit is zero, already verified by (D.22) and

(D.23) for n = 1. Then by L'Hospital's rule

f(n) D, ~ pl-+l) _ F: - nf("-l)D ''- nf(n)D '
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so

p(,_+l) _ F,_+I - (n + 1)f(n)D ' -,- 0,

verifying the f('_)D induction hypothesis and the formula

/(n) ~ 1
n -_ 1 (p(n+l) __ Fn.t.1 ) (D.28)

provided that the existence of the p(,_+l) and ((,,+1) limits has been demonstrated.

To calculate p("+_) and (("+_), just mimic the argument used in (D.27) - (D.28),

except that you end up with a pair of simultaneous equations as in (D.26). First

expand s ('0 = (p'D)(") and t OO = (('D) ('0 and assume by induction that the p('_+l)D

and ¢'('_+I)D limits are zero. Then generalize the version of L'Hospital's rule cited

above to the case of two simultaneous limits to get

8(n-_l) p,D(n+l) P,_+l (n + 1)p (n+l)

t("+_) - ¢ 'D('_+I) - Q,,+I - (n + 1)¢"(n+_)

~ 0

~ 0

(D.29)

where

) )P,,+I _ n + 1 P(J+I)D(n+I-J) , Q,,+I = _ n + 1 ¢(j+l)D(n+l_i)
j=l J j=l J "

Evaluating D("+I) ~ wt("+l) - s!'_+l)q i , °z°("+l) ~ S,_+1 + ¢(,,+1), and t ("+1) -_ T,+1 +

p(,,+l) separates out all the remaining p(,+l) and ((,,+1) terms. Now solve (D.29) by

collecting these terms:

-(n+l+_)p(_+l)+ (1-k--_)(('_+1)

(1---_)p(n+l)- (n-q-1--_-)¢(n+l)

o

w

~ Pn+I-k_T,_+I-(I+w) S_,+I

~ Q,,+I-(1-w) T,_+I-wS,_+I

or

p(n+l) ~ [(n+ 1)w(S,,+l-T,,+l)-wQ_+l-((n+ 1)W-qi)P,_+I]/DD

(D.30)

.-- [(n+ 1)qi(S,,+l-T,,+l)+qiP,,+l-((n+ 1)W +w)Q,,+l]/DD

for DD = (n + 1)(n + 2)W.

But W(O) is uniformly bounded away from zero by the assumption that w > 0.

Therefore the use of the simultaneous limit version of L'Hospital's rule is valid for all

0 and all the induction hypotheses are verified. Also the denominator of f_'_)(0 +) is

a power of W, so f_")(v) must be uniformly bounded on [0,2_] x [0, u']. This fully

establishes the both the finiteness and computability of the terms of the expansion

(D.19) and the O(1/r N+_) property of its remainder. A simple consequence is the

free space condition (D.7). However the method used in the next section provides a

simpler way to derive convenient formulas for the higher order terms.
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Second Approach

In the secondapproachit is assumedthat the expansionhas the form

4r _r ;7+7 _+''" /
(D.31)

where r/, = rl,,(u, Az, Ay, Az), u = (u,v,w) = (z/r,y/r,z/r), and (x,y,z) =

(iAx,jAy, kAz). G is assumed to be a smooth function of x,y,z and each r_. a

smooth function of u, v, w.

The expansion (D.31) is substituted into the Poisson equation (D.6) and recursion

relations (D.11). But first all terms, except the G(i,j,k) terms, are expanded in

Taylor series about (x, y, z). For example,

oo _x n

G(i + 1,j,k) = G(i,j,k) + _ D'_G(i,j,k) n! (D.32)

where (D:_, Dy, Dz) = V is the gradient operator. For each equation all terms that

have the same power of 1/r are collected and set to zero. For this purpose, it is easily

demonstrated by induction that D2(r/dr t) = O(1/r"+t).

Certain auxiliary equations are also necessary. This includes the spherical equation

u 2 + v 2 + w 2 = 1 (D.33)

and orthogonality relations of the form F_ = V'F. u = 0 for F(x, y, z) = F(ur, vr, wr)

a function whose value is independent of the scale factor r for r -¢ 0. In mathematical

terminology, F is a function on the real projective plane. For example,

(r/.)_ = V_.. u = 0. (D.34)

The 1/r m+l equations, m >_ 1, that come from the recursion relations are

vD,, 77" +v-- = uDy + Ur,,
I.m

(,¢.)wD_ rl,, +w-_-_- = vDz +yr,,

(D.35)

where q,,, = (q,m, q,_2, q_3) is defined by

q_=r"_( 2e+k'' s,_tl)! for kin= integerpartof[-_ -3-] , (D.36)
l= 1

s_, = D2'(2e + 1) (U_-:'_\r.._2,]. Di(j)= (AxiD_,AyiDt, AziD{) . (D.37)

Equations (D.34) - (D.35) evaluate to a 3 by 3 system of equations in Vr/,,,, which is

solved to get

Vq,,, = uutq,_ - q,,,. (D.38)
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Thus Vr h = 0, so r/x is constant. According to section D.2.2 this constant value is 1.

The 1/r ''+_ equation that comes from the Poisson equation is

2 _ + (_ _ _! = 0. (D.39)

Using (D.33) and (D.34) to simplify (D.39) yields

77,, = (m- 1)m V2r/m + 2r'_'_ ('_:F-g! " (D.40)
g= 1

Now (D.3S), (D.36), and (D.39) yield

_" V. (uu_sml) - V. s,_
V2qm = rn(vrl'_'U)r + rm_"_=, (2g+ 1)!

k,,, __7. s,nt + utVsmtu + 2u • s._t/r
._ r rn y_

t=t (2g + 1)!

k., rV +(m 1)u s,,e
= --rrn--1 Z " Srnt -- "

t=_ (2g + 1)! ' (D.41)

using the orthogonality relation V(r'+as,,,_) •u = 0 to get _Ts,_tu = -(m + 1)smt/r •

Thus substituting (D.41) into (D.40) gives the following recursion formula for the

asymptotic coefficients when m >_ 2.

J" r"+l ( gr )q'=Y_(2/+l)!m u+ (g+l)(m_l)V "s,,,t (D.42)
g=l

It is immediate from (D.42) that r/2 = 0 . Also smt involves only lower even

asymptotic coefficients r/,_ if m is even, so (D.42) gives a proof by induction that

r/,,, = 0 for all even m. In addition, it is shown below that rt=k+l may always be

expressed as a polynomial in factors of the form U_;(2j), as in (D.43) and (D.44):

r]3 = lu2(o) - 3U2(2) + 5U2(4) (D.43)

=  u65,(2)+  189u"6)

_-U ( ) + _-U (4)) Us(0)

+ (13_U2(2) - 33_U2(4))U2(2)+ }]}-_-U2(4)U2(4)28 (D.44)

where Ui(j) = Axiu j + Ayiv i + Aziw j. These formulas for r/a and r/s are good for

computation as well as compactness of expression.

First, it is clear by induction from (D.42) that r}2_+1 is always a homogeneous

polynomial in Ax, Ay, Az of degree 2k, that the coefficients of this polynomial are
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themselves polynomials in u, v, w, and that all powers of u, v, w, Ax, Ay, Az are even.

The way to get the special polynomial form used in (D.43) and (D.44) is as follows.

The basic idea is to first compute the x partial derivatives of uJ/r i in the form

n_0

(D.45)

with a_,,(n) = 0 ifj-k+2n < 0. The same coefficients are valid for the corresponding

expansions of the y partials of vJ/r i and the z partials of w'i/r i. Next extend (D.45)

to

D_ Urn-(j) = akj.,(n) _ + a_o,,+j(n) r,+j+2,
F* n=O

: Z v TMr,+k + (j) ri+k J
n_O

This formula may be extended further to compute the coefficient r/2k+x by the following

method.

U2k- e(j)"
r2k+3_ 7. D2t(2g + 1) r2k+l_2t --

mt

"_' (n)) U2_(j + m,_) + ao,,_ _ (D.46)

where me=2g+2, m,,=2n-2g-2, andmk =2k+l-2g+j. Exactly the same

formula is used to compute r2k+2u • D2t(2g + 1)[U2k-2t(j)/r2k+x-_t], except that mt

is changed to 2g + 1 and m,_ to 2n - 2g. Thus the r/s formula (D.44) is obtained from

the r/3 formula (D.43) by using (D.46) to evaluate the recursion formula (D.42).

To get r/r one must in addition evaluate the same operators on terms of the form

U q (j_)Ui2(j2)/r 2k+a-2t where il q-i2 = 2k -2g. The result is

mt

__, (aj_t+j_,,_ (n) - a_,_ k(n) - aj_._ k(n) + a_,_ h(n)) U2k(j_ + j2 + m,)
n----O

+ (aj:._,,k(n)- aorta(n)) Uq+2t(j, + m,)Ui'(j2)

+ (aj=,_,(n) - ao_,(n)) U"+2t(j2 + m,)U"(j,)

mt+ ao,,,_.(n)U21(m,_)Uq(j,)Ui2(J2) (D.47)

with ink, mr, and m,, exactly as before.

Formula (2.41) generalizes to Ui(j) products of arbitrary length by using the input-

output formula of combinatorial set theory.

D.2.3 The Three Plane Representation

As described in section D.I.1, the Green's function G is computed from its asymptotic

values by solving a Neumann boundary value problem with a delta source function.
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The theory of FFT solutions to Neumann problems is given in section D.3.1. Here

that theory is applied to get a simple formula, (D.51) below, for the DFT, or discrete

Fourier transform, G, defined by (D.90), in terms of the boundary data.

The theory begins by transforming the boundary data into equivalent boundary

sources, as in section D.3.1. Thus the sources p are all zero except for p(0, 0, 0) = 1,

p(rn=,j,k) = g=(j,k), p(i,m_,k) = g_(i,k), and p(i,j,m_) = g:(i,j), where

g=(j,k)= G(m,:+ l,j,k)-G(m=-l,j,k)
Ax 2 (D.48)

and g_ and g_ are defined similarly.

Next, these sources are cosine transformed in x, y, and z. To get the DFT G,

this triple cosine transform is scaled by a factor of 8. To illustrate, the scaled triple

transform of g= is (-1)_G=(3, 3') where

G=(3, 7) = 4 Y'_ }"_ cos cos g=(j,k)
j=ok=o \ m r ] \ mz ]

(D.49)

and the ' denotes a scale factor of 1/2 on the initial and final summands.

Finally, the triple cosine transform is divided by the sum of the three eigenvectors,
as in section D.3.1. Here

4 (od)e=(a ) = - Ax-----7 sin 2 (D.50)

and % and ez are defined similarly. Thus

(_(a,3,7) = 1 + s_,G=(3,7) + s_G_(a, 7) + s.vG.(a,3 ) (D.51)
e_(_) + %(3) + e,('r)

for In, _, 7)7_ (0, 0, 0), s_, = (-1)", etc.

G(0, 0, 0) requires a special computation since the denominator of (D.51) is zero.

But first note that the numerator must also be zero, which is the consistency condition:

G,(O,O) + G_(O,O) + Gz(O,O) = -1. (D.52)

Formula (D.52) is an excellent check of numerical accuracy. The code automatically

scales the left side of (D.52) by a factor, labeled RSC, which forces (D.52) to be

satisfied to machine accuracy. Then the deviation of RSC from I is used as a measure

of the number of significant digits in the Green's function.

To compute C/(0, 0, 0), first compute G(m=, rn_, ms) to maximum accuracy by the

asymptotic expansion (D.1). Then represent G(rn=, rn_,, rn_) by the inverse DFT for-
mula

G(mx, my, mz)

I

= EE
mzrnyrnz _=o _=o

# t

rt_X Fief#

- EE
mxrn_mz o=o 0=o

cos_ cosZ,_cos_ d(a, Z, _)

_-'_ (- 1)'_+_+" G(cr, 3, 7) (D.53)
_,=0
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Solving (D.53) for G(0,0,0) gives

( )
cr,fl,'y

where the sum extends over all (c_, fi,_), except (0,0,0), as in (D.53).

(D.54)

D.2.4 The Downstream Green's Function

The downstream Green's function has been defined by the summation (D.4), but the

actual value of this summation is always infinite, as is shown below. However it is

also shown below that definition (D.4) is mathematically valid in the following sense.

Interpret Gd as a linear operator on the set DQ of all downstream source functions
that sum to zero:

_O

ad(i,.,.)*r = _ G(g-i,.,.)*r (D.55)
t_.mZ

for

I'ny r,,lz }
r • D o = f : _ _ f(i,j) = O . (D.56)

j=0 k=0

If G is already known on the computational box, then only the summations outside

the box need be investigated in order to compute Gal. Outside the box the asymptotic

expansion (D.2) may be used to compute G. The Euler-Maclaurin formula permits

the infinite sum of each asymptotic term to be computed by the corresponding infinite

integral plus correction terms derived from the derivatives of the summand function

at the lower boundary (downstream edge of the box). That is, write

mz

Gd(i,j,k) = Gd(-1,j,k) + _ G(g,j,k), (D.57)
l=mz-i

and compute

Gd(-1,j,k)

O0

= _a(m,+g,j,k)
t=l

1 _o 1 Ax

= _ f_o G(x,j,k)dz - -_G(xo, j,k) - --_D=G(xo, j,k)

(D.58)

Ax3 3 x eo B2 i 2i-1 2i-1

+ -_D,G( 0,j,k)- _ _Ax D, G(xo, j,k)
i=3

where Xo = m, Ax and B2i is a Bernoulli number.

Applying (D.58) to the expansion (D.2) shows that the infinite part comes from

- ln[X+v/N2+y2+z2]-ln(xo+r)

= ln(2N) - ln(xo + r) + O(1/N 2) (D.59)

the integral
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for N -,_ c<) and r = ](xo, y,z)l. The infinite term ln(x0 + N) is constant for all

j, k, and a constant vanishes upon convolution with a function in T)Q. Therefore the
operator formula (D.55) is well defined.

The simplest way to make Gu well defined as a function in the context of the

Euler-Maclaurin expansion is to delete the infinite term from the integration (D.59).

However, this is not quite enough because the goal is to compute Gd in the same way

as G is computed: First compute Gd values at the boundary of the computational

box, then solve a Neumann boundary value problem. For this purpose G4(0,0, 0)

requires a separate computation, just as G(0,0, 0) did in section D.2.3. But in this

case Ga is actually only defined up to an arbitrary constant, according to (D.55) and

(D=56). That is, the value of Gu(0, 0, 0) may be chosen arbitrarily. The simplest choice

is Gd(O, O, O) = O, and this definition also has the advantage that it tends to minimize

the effects of any numerical deviation from the downstream condition (D.56).

Another aspect of the Neumann boundary value approach to G4 is that four bound-

ary planes of data, instead of three, are required due to the lack of symmetry along

the x axis. The equivalent sources on the i = 0 and i = rn_ planes are

gdo(j,k) Gd(-1,j,k) - Gd(+l,j, k)
= - Ax _ + 6(j,k)

G(m, - 1,j,k) + a(m,,j,k)
= Ax _ + _(j, k) (D.60)

gd_(j,k) =

m

Gd(m_ + 1,j,k) - Gd(m_ - 1,j, k)

Ax 2

G(O,j,k)+G(1,j,k)

Ax 2
(D.61)

From (D.57) the boundary plane at j = my is

ge_(i, k)
Gd(i, my + 1, k) - ad(i, my - 1, k)

Ay2

= _ G_(- 1,my + t, k) - G_(- 1,my - 1,k)

_t'l, Z

Ay2

+ _ g_(g,k) (D.62)
l=rnz--i

and similarly for ga,(i,j). A scaled triple cosine transform is applied to each of planes

(D.60) - (D.62), just as in section D.2.3, to get the four planes Gao, Gdx, Gdy, Gas.
The result is

_(., Z,.y) = a_o(Z, _) + _.a_(Z,-r) + _a_y(.,-y) + _.ad.(-, Z) (D.63)

for (o_, _,-y) 7_ (0,0,0) , Gd(0,0,0)= 0, so = (-1) a , etc.

If G has been computed to an error of O(1/r _') by the expansion (D.2), then the

infinite summation (D.4) gives a Gd error of O(1/r 6) in the following way. The 1/r
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term in the expansion of G contributes

1 Axu Ax3(9u- 15u 3)

P(1/r) = -]n(xo + r) - _r + _ + 720r a (D.64)

where u = xo/r . According to (D.43) the rl3/r a contribution requires three Euler-
Maclaurin calculations:

P(u2i/r3) = A-"-xl_o r 3+_'----Tdzz2i 2r3u:i 12r4Ax (2iu_. 1 _ (3 + 2i)u _i+') (D.65)

for i = 0, 1,2. By (9.44) the ,ls/r 5 contribution requires five calculations:

1 r_o x2_ _2_
P(u2i/r s)

A--'_J,o r s+2"--''Tdz- 2r''-g (D.66)

for i = 0, 1,2,3,4.

Using integration by parts, each of the integrals in (D.65) may be reduced to

¢ dz _ 1 1 (D.67)
o r3 1 +ur 2'

and each of the integrals in (D.66) may be reduced to

fS dx u + 2 1 (9.68)
o _= 3(u+1) 2r 4"

Thus for (xo, y,z) = (m_Ax, jAy, kAz), V_(j) = Ayiv _ + Az_w j, and Ui(0) --

Ax i + Ay i + Az i, compute

Gd(-1,j,k) = AxAyAZ47r [P(1/r) + (1U2(O) - 3V_(2) + 5V_(4)) P(1/r3)

3Ax_P(u2/r3)+ 5Ax2P(u4/r3)-+-(3U4(0)-654]--_V (2) + 1_5V4(4)

ls°v'(6)+ 35_-_ ( ) + _-_V (4)) US(O)16

315 2 1155 V2(4)V2(4))+ P(1/r 5)

+ L_._..._.Ax,/65_ -_'15U2" 0,( ) + -]_"105V2('))"_ 33__V2(4) ) Ax_p(u2/r5 )

+ (_'_U352(0) + 5_--_Ax2-31-"_5V_32 (2) + _45V2(4))Ax2P(u4/r 5)

6_-_3Ax'P(u6/rS) + _2_ Ax'P(uS/rS)] . (D.69)

D.3 THEORY OF THE CONVOLUTION AL-

GORITHM

D.3.1 FFT Dirichlet and Neumann Poisson Solvers

FFT Poisson solver methods are described for a rectangular domain (box) in a Carte-

sian grid of arbitrary dimension. At each face the boundary conditions may be chosen
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independently to be Dirichlet or Neumann. Neumann boundary conditions are of the
central difference kind, centered on a face.

Additional boundary options include periodic boundary conditions and also Dirich-

let or Neumann boundary conditions of the simple forward or backward difference

kind, centered on a half grid line just inside a face.

The methods employ FFT sine and cosine transforms and shifted sine and cosine

transforms. Optionally, tridiagonal solvers, which are faster, may replace the "last"
transform.

These transforms are derived as eigenvectors of the matrices that describe the

problems. For example, a 1D Poisson problem D28 = p may be written as a matrix

equation Ax = b and solved by computing x = E(A-X(E-lb)), where E is the eigen-

vector matrix and A is the diagonal eigenvalue matrix. In general such a procedure

is extremely inefficient, but the availability of analytical formulas for A and E and of

FFT techniques for the matrix-vector multiplies makes the method very attractive.

Swarztrauber[94] also presents much of the following material.

Derivation of the Matrix Equations

In a 1D Dirichlet problem D2¢ = p the endpoint values ¢(0) and ¢(m) are specified.

Thus the problem may be rewritten as the matrix equation

Ax = b (D.70)

where A and b are given by

-2zl + x_

xj-1 - 2xj -4- xj+x

Xm-.2 -- 2xm-1

= Ax2p(1)- ¢(0)

= Ax2p(j) (D.71)

= Ax2p(m- 1)- ¢(m).

Next let D_¢ = p represent a central difference Neumann problem with endpoint

specifications db= (¢(-1)- ¢(1))/2Ax and d_ = (¢(m + 1)-¢(m- 1))/2Ax. Then

the matrix equation is given by

-2x0 + 2x,

xj-1 - 2xj + xj+l

2z,,_1 - 2z,_

= Ax2p(O) - 2Axdb

.°.

= Ax2p(j) (D.72)

= Az2p(m) - 2Axd_.

A Dirichlet condition on the left with a Neumann condition on the right gives

= Ax2p(1) - ¢(0)-2xl + z2

xj-1 - 2xj + xj+l

2x,.,,_1 - 2xm

= Ax2p(j) (D.73)

= Az2p(m) - 2Azd_.
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A Dirichlet condition on the right with a Neumannon the left gives

-2Xo + 2xl = &x_p(O)- 2Axdb

x j-1 - 2x.7 + xj+x = Ax2p(j)

,,.

xm-: -- 2x_,-1 = Ax_p(r_-- 1)--¢(m).

For the periodic boundary condition ¢(m + j) = ¢(j), the result is

-2x0 + xl + xm-1 = Ax2p(0)

xj-x -- 2xj + xj+l = Ax:p(j)

...

xo + x,_-2 - 2x,_-1 = Ax2p(m - 1).

(D.74)

(D.75)

For Dirichlet half grid line boundary conditions, ab = (¢(0) + 6(1))/2 and a_

(¢(rn - 1) + ¢(m))/2 are specified. This gives

-3xl + x2 = Ax2p(1) - 2ab

Xj_ 1 -- 2Xj + Zj+l

Xm-2 -- 3Xm-1

= Ax_p(j) (D.76)

=Ax2p(m--1)-2a_.

For Neumann half grid line boundary conditions, db = (¢(0)- ¢(1))/&x and

d, = (¢(m)- ¢(m- 1))/Ax are specified. This gives

= Ax_p(0) - Ax&-xl + x_

xj-1 - 2xj + z j+, = Ax2p(j) (9.77)

.°°

Xrn--2 -- Xm--1 = Ax2p(rn - 1) - Axd,.

Of course, mixed half grid line Dirichlet-Neumann problems are also possible by

starting out as in (D.76) and ending as in (D.77), or vice versa.

If the Poisson problem is a 2D problem, let A_ be the 1D matrix for the x direction

and A u be the 1D matrix for the y direction. Let 15 and I u be the corresponding

identity matrices, and let ® denote the tensor product. Then the matrix equation

becomes

(A_®I u I_NA_
7X7i + -Ay_ )x=b. (D.78)

(The tensor product of two matrices A.×m and Bo×p is a linear operator on matrices

of order m x p that gives n x o matrices. It may be defined by

(v)'(A®B)x = Y2a_,v,, for V,,= B,_
i

213



or, equivalently,

( )t(A ® B)x = _ B_jz_j for zk3 = __, A_,x,j.
j i

That is, first operate on the rows by B, then on the columns of the result by A, or

reverse the order to operate first on the columns by A, then on the rows by B.) If, for

example, A_ is Neumann on the left and Dirichlet on the right with Ay full Dirichlet,

the b in (D.78) is given by the computer operations

blj := p(i,j) for O<_i<m_:,O<j<rn_

b0j := b0j 2db(j) for 0 <j<m_
Ax

b,,,-lj := b,,,,-lj ¢(m_,j) for 0<j<m v
, , AX2

bil := bn ¢(i, 0) for O_<i<m_
Ay2

bi,m,-1 := bim,_l ¢(i, rnv) for 0 < i < m_.
' Ay2 --

(D.79)

Both (D.78) and (D.79) generalize directly to higher dimensions, with the 3D equation

being

(A_@I_®IzAx2 + I_®A_®IZAy2 + I_®I_,®A,)Az2 x = b. (D.80)

Eigenvectors and Eigenvalues

The eigenvector-eigenvalue solution to equation (D.70) is simply

x = A-ab = (EAE-1)-lb = E(A-'(E-'b)) (D.81)

where E = (ei_) is the eigenvector matrix of A and A = ()_,) is the diagonal eigenvalue

matrix. This generalizes directly to the multi-dimensional tensor product formulation

as follows. Applying the tensor product properties

(A+B)[(C+C')@(D+D')] = (AC+AC')@(BD+BD')

[(A+A')@(B+B')](C@D) = (AC+A'C)®(BD+B'D)

to (D.78), for example, gives

Iv -'
x=(E_NE_) k &x 2 + Ay2 ] (E;1NE_q) b" (D.82)

The corresponding 3D solution is

x = (E_®E_®E_)y (D.83)
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where

and

y ( )-'A_ ® I_ ® I_ I_ ® Ay ® I_ I_ ® Iy ® A,. b.y _
Ax 2 + +Ay2 Az 2

b:': : (E;'®E:' ®E:') b.
Another way to write (D.83) is

(_,(_) A_(/3) _z(,))Ax2 + --+Ay2 --Az2 xX_Z(a,/3,7)= b_Z(a, /3,7). (D.84)

The three plane representation formula (D.37) for the Green's function is derived

from (D.84).

Now the task is to find the eigenvalues and eigenvectors for the matrices (D.71) -

(D.77). These are given in table D.1.

There are certain useful relations between some of the eigenvector matrices of

table D.1. Let S be the operator that reverses the order of the rows when multiplied

on the left, and let T negate the even numbered columns when multiplied on the

right. Then

ED,,Oh(m) = Eby(m- I)

EN,,mh(m) = E*NO(m- I)

Ep(m) = ENN(m/2) + EoD(m/2)i

EDN = S END T

EDh Dh = T ENh Nh S

EDhNh = S ENhDh T.

(D.85)

Table D.1 may be verified by substituting into the appropriate matrix equation,

(D.71) - (D.77), and using trigonometric identities. For example, in the half grid line

Neumann case (D.77) let n = m - 1 and 0 = k_r/2n. Then

(Aek)a = -cos0+cos30

= - cos O + cos Ocos 20 - sin O sin 20

= cos0[-1 + (1 - 2sin20)- 2sin20]

= -4sin 20cos0

= cos(2j- 3)0- 2 cos(2j- 1)0 + cos(2j + 1)0

= (cos20- 2 + cos 20) cos(2j - 1)0

= -4sin2(0) cos(2j - 1)0

= cos(2n- 3)0-cos(2n- 1)0

= (-1)_(cos30- cos0)
= -4sin 20cos(2n - 1)0

There is one case in which the solution formula (D.83) fails. Namely, a zero sum-of-

eigenvalues cannot be inverted. According to table D.1 this occurs for o_ =/3 = 7 = 0
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Problem* Eigenvectors E

_ _in(_)

_ s_n(_)

N_ cos(_)

_ _in(_)

NhDh cos \ m-1

Eigenvalues A

-_in_(_) {

-_si_(_)

(

\ _-, J (

-_n_ (_) {

-4 sin2 (__-T_rU_I))

-4sin_(___,) {

-4 sin2 k21._-l))

-4 sin _{'_'_ /
\2(.,-1)) t

Indices

l<j<m-1
l<_k<m-1

l<j<_m
l<k<m

O<_j<m-1

l<k<m
-- m

O<j<m-1

0 < k_< m- 1 Key"

l<j<m-1

l<k<m-1

l<_j<m-1

0<k<m-2

l<j<m-1

l<k<m-1

l<j<m-1

l<k<m-1

D = standard Dirichlo¢

Dh = half grid line Dirichlet

P = periodic

N = central difference Neumann

Nh = half grid line Neumann

Table D.I: Eigenvectors and Eigenvalues
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wheneveryfacehasa central differenceNeumannboundary condition. In this case the

solution x is determined only up to an additive constant, and an additional equation

is needed to determine this constant. In addition (D.84) shows that the consistency

condition

bX_Z(0, 0, 0) = 0 (D.S6)

must hold. Again, the three plane Green's function formula (D.37) is an instance.

The Transforms

To implement FFT algorithms for the eigenvector matrices of table D.1, several mod-

ifications are useful. First note that if F is any diagonal matrix, then A = EAE -1 =

(EF)A(EF) -1. That is, the eigenvectors may be scaled anyway you please. For ex-

ample, if Fkk = 1 except Fll = F,_m = _, then the cosine transform E of table D.1

may be replaced by the standard cosine transform EF.

But note that in (D.81) - (D.83) it is the inverse of an eigenvector matrix that is

first applied to the data vector b. Therefore the scale factors F are chosen so that

(EF) -1 is a standard forward transform. These transforms and their inverses are
listed in table D.2.

The TDN and TND transforms, or their inverses TDhDh and Tyhg_,, are referred to

as the shifted sine and shifted cosine transforms, respectively. The TDhNh and TYhDh

transforms are the dual shifted sine and dual shifted cosine transforms.

A straightforward way to derive the eigenvector matrix inverses of table D.2 is to

compute S = (sk) for sk = lekt 2 and ek = the kth eigenvector. Then E -1 = S-1E t.

Another way is to reduce the problem to standard DFT inversion by using symmetric

or antisymmetric data. For example, to invert Tu,,,Uh set b2,,+x-j = bj for j = 1...n

since cos(k(2n + 1 - j - _)Tri/n) = cos(k(j - ½)ri/n). Also make the data periodic

of period 2n so that bo = b_,,. Then

bk = (TNhNhb)(k)-.-=Zcos k(j-._) b_
j=l

= E exp k(j- bj
./=0

l exp{-kzri/2n} _ exp kj bj (D.S7)
2

j=0

Now invert the DFT and use bk = b2,,-k and b,, = 0 to get

12n-1 { x'i}bj = 2"-'n"_ exp -jk-- 2exp{krri/2n}b_,
k=0 ?2

= - exp -(j- k
7"/ k=O

= - +_cos (J- 2 n/ n
n k=l
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Forward Transform"

(TDDb)(k) "-'- z,_-,

(Tyyb)(k)-- b°'-_-Ejm__llcos, b/+(-1, 2

= _j=l sin bj + (-1) k-lb'_2

(TNDb)(k) = _2 + _j_=-_t cos (_)bj

= )-_q=0 exp bi

(TDhDhb) (k) = Er_'sin (_) bj

= _7=1 cos b/

(TDhNhb)(k) m-, ((k- )

(TN, Dhb) (k) = _=_t cos ((k-½)O-_-)-).,_, bi

Key"

D = standard Dirichlet

Dh = half grid line Dirichlet

P = periodic

Inverse Transform

TD_= 2"_TDD

-1 2
T,g_ N = "_ T N N

TS_ = -_To_o_(m+ 1)

TN_= 2-_TNhNh(m + 1)

= -_Tp

TDXhOh = 2---zT_ITDIv(m- 1)

-1

-1 2T_ wh = -_-f__TDh_,

-1 2

N = central difference Neumann

Nh = half grid line Neumann

Table D.2: Transforms and Their Inverses
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Tridiagonal Solvers

Instead of doing three transforms in (D.83), forwards then backwards, it is computa-

tionally more efficient to do two forward transformations, a tridiagonal solver, then

two inverse transformations. For example, if the eigenvector decomposition is used

only in the x and z directions, then the following equation is obtained instead.

x= (E_® I_® E_)y (D.88)

where

and

A, ® Iu ® I, I. ® Au ® I, I:: ® Iy ® A,'_ -1y = Ax 2 + + ] bXZAy2 Az 2

bXZ = (E21® Iu ® E-_X) b.

Formula (D.88) is equivalent to solving the following tridiagonal equation for every a

and 7.

" " '+ Az(7))I laz--r ., 7)= b_'( a, ", 7) (D.89)

The n-dimensional generalization of (D.S8) and (D.89) is obtained by specifying an

order for the n transforms in the generalization of (D.83), then simply omitting the
last one.

A general purpose tridiagonal solver could be used, but the (almost) equal and

constant sub and super diagonals and the (almost) constant main diagonal permit

a more efficient implementation. The code uses a modification of the LINPACK

symmetric matrix algorithm, with vectorization in the x direction, unrolled loops in

y, and an outer loop in z. This way the FFT in x vectorizes over yz planes and the

FFT in z vectorizes over xy planes for the ordering in an xyz FORTRAN array.

The idea behind the algorithm is to do Gaussian elimination from the top and bot-

tom simultaneously until the process meets in the middle. Then do back substitutions

from the middle back to the top and bottom simultaneously. If the number of rows

is even, there is a middle 2 by 2 block, which is solved directly. For an odd number

of rows, both off diagonal values of the center row are eliminated simultaneously to

get the middle value.

To minimize the number of operations, especially the number of divisions, the

following technique is used for a problem with constant diagonal and off diagonal.

Define a = main diagonal value, c = off diagonal value, aj = jth row diagonal value

after the j - 1st Gaussian step, by = jth row right hand side, dj = c/aj, do = a/c,

and cx = 1/c. Only the values do, q, bj, and dj are actually computed and stored.
Then in the forward substitution

c 2

al = a and aj+l = a -- --
aj

so

ajc 1
dj+ 1 = - ,

aaj - c2 do - dj
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In the back substitution

bj+l := bj+ 1 - djbj,

b,__3 := bn-j - djb,_+l_j.

bj := (bj - cbj+l)/aj = dj(clbj - bj+l)

b,,_j := dj(qb,__j - b,__l_j).

In the case of a mixed Dirichlet-Neumann problem the diagonal values a j, hence

dj, are different for the top and bottom eliminations. Also the first step of the forward

substitution and the last step of the backward substitution must be specially coded.

D.3.2 Transform Algorithms

Several common transform algorithms are used in the code and also several unusual

or specialized algorithms. All the algorithms consist of reductions to the standard

complex FFT. In most cases there is an intermediate reduction to real FFT's. The

simplest and most efficient method of coding real FFT's was to do a complex FFT on

a pair of real sequences, although a single-sequence real transform code would have

been simpler to use. Therefore most of the algorithms are actually applied to a pair

of sequences. All the algorithms are implemented for a matrix-type data structure so

that the transfor'_'.s are performed in one direction with vectorization, or processing
in parallel, in the other direction.

First, let's review the standard real, sine, and cosine algorithms. A basic reference

is [95]. Let b0, ..., b,_-x and co, ..., c,,-1 be a pair of real sequences and set a = b + ie.

Let the DFT (Discrete Fourier Transform) be defined by

&(k) = DFT(a)(k) = _ exp {kj aj. (D.90)
j=0

Then the paired real algorithm is

1 i

= 5 [Re(a(k)) + Re(h(n- k))] + _ [Im(a(k)) - Im(a(n- k))]

1 i

= _ [Im(a(k)) + Im(a(n- k))] + 9--2[-Re(h(k)) + Re(h(n- k))]

(D.91)

for k = 1,...,n/2, with b(0) = Re(h(0)), and fi(0) = Im(a(0)). Implicitly b(n - k) =

b(k) and _(n- k)= _(k).

The sine transform algorithm is taken from Temperton [96]. The idea is to form

a certain real sequence, apply a real transform, then extract the sine transform from

the resulting data. The real sequence is

dj =sin j (bj + b,__j) + -_
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for 1 _<j <n- 1 with do=O. Let b=TDDb. Then

b(1) = _Re(d(0))

_(2k+ 1)-_(2k- 1) = ae(J(k))
l)(2k) = Im(d(k))

(D.92)

for k = 1,...,n/2.

The cosine transform is a close variation on (D.92). Let

cj = sin j (bj - b,__j) + -_

for0_<j_<n- 1. Let b=TNNb. Then

1 r_--I

_(1) = _.(bo-b,,) + _ cos(j,_/,_)bj
j=l

b(2k + 1 ) -/_(2k - 1) = Im(_(k))

b(2k) = Re(a(k))

(D.93)

for k = 1, ..., n/2.

The three transform algorithms (D.91) - (D.93) may be combined to transform a

single, real, zero-extended sequence. This is a sequence x = bo, ..., b,,, 0, ..., 0 of length

2n, which arises naturally in FFT convolutions. First double b0 and b,_ so that

3:(k) = (TNNb)(k) + i (TDDb)(k).

Next compute the real sequences dj and cj as in (D.92) and (D.93). Now pair up cj

and dj to compute _:and d by (D.91). Then the sine and cosine transforms, hence k,

are given by (D.92) and (D.93).
Note that a shifted cosine algorithm could be implemented by the symmetric data

argument (D.87). Similar algorithms exist for the sine, cosine, and shifted sine.

However in all these cases the DFT is of length 2n, twice as long as it need be. A

suitable shifted cosine algorithm is actually somewhat easier to derive than the sine

and cosine algorithms cited above. To compute b = TN_Nhb first define cj = b2j.

Then note that c,__j = b2_+_-(2j+l) = b2j+l and that b0 = b_ = b2,, by the inverse TND

formula in table D.2. That is, c may be computed as

120

cj

Cn-j

= bl

= b2j for j = 1,...,n/2

= b_3÷,for j = 1,...,(,_- 1)/2.
(D.94)

Now write

cj 1D(0)+2"-1 ( 1) kzr h/_(k)= -_--_cos (2j-:_ --_--)
12 k=l
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where

= l_(0) + 1 exp -(2j- _)-- b(k)
n _ k=l

+ exp {(2j - _) n }b(n-k)]

= -_exp -jk zk
72 k=O

z0 = b(0) and zk = exp [. 2n (b(k) - ib(n - k)) (D.95))

for k = 1,..,n- 1. Thus to compute b, first apply a real transform to c to get

z. Then scale z by exp{-krri/2n} for 1 < k <_ n/2 and take the real part to get

b(k) and the imaginary part to get -b(72 - k). To compute TND simply reverse this

procedure: Compute z by (D.95) for k = 1, ..., n/2 and apply the inverse of the real

transform (D.91) to get e, hence b by (D.94). An alternative algorithm is given by

Swarztrauber[94].

The shifted sine algorithm is completely analogous to the shifted cosine algorithm.

The difference is onl.y that in (D.95),/_(0) is replaced by (-1)k-lb(n) and b(k)-ib(n-

k) is replaced by (-b(k) - ib(72- k))/i = -g(n - k) + ig(k). Equivalently, the relation

in (D.85) could be used to compute the shifted sine transform from the shifted cosine

transform, or vice versa.

Efficient dual shifted sine and cosine algorithms may be derived by natural modifi-

cations of the shifted sine and cosine algorithms. For the dual shifted cosine transform

TN, Dh, again define e as in (D.94) and modify (D.95) to get

cj = - cos (2j-
72 k=l n

= exp -_exp --jk zk
72 k=0

where

zk= e×p{(k- 1) i$_, _n) (b(k) - ib(n + 1 - k)) (D.96)

for 1 <_ k< n with z0 = z,,. The problem now is that a transform must be applied

to the complex sequence exp{-jTri/72}cj to solve for z. That is, the paired real

transform (D.91) can no longer be used, resulting in twice as much work as necessary.

The solution is to apply the complex FFT directly to a pair of problems in analogy

with algorithm (D.91). Thus set

cj=exp{_}(c} +ic_)

where c1 and c2 are defined by (D.94) from b 1 and b2. Then transform c to get z 1 + iz _

so that

1

b_(k) = _(t_e(w, ) - Im(y,,+x__))
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1

b2(k) -- _(Im(yk) + Re(yn+l-k))

(D.97)

for

Yk 1 rri}= exp --(k-- 2)_n (z_+iz_)

= (bl(k)+b2(n+l-k))+i(-b'(n+l-k)+b_(k)).

Just as with the shifted sine transform, there is a dual shifted sine transform

analogous to the dual shifted cosine transform. The resulting formulas that replace

(D.97) are

1
= :-(Im(vk)- Re(y.+l-k))

2

1 (Re(yk) + Im(y.+__k))
2

(D.98)

for

Yk-" -(bl(n +1- k)+ b2(k)) +i (bl(k)-b2(n +1- k)).

Again, the relation in (D.85) may be used instead.

One more transform is useful for FFT convolutions with symmetric data• Let x =

b0, ..., b,__l, b,_, bn-1, ..., b0, 0, ..., 0 be a symmetric, zero-extended sequence of length 4n.

An efficient algorithm is derived for the DFT as follows.

kn2rr i _
3:(k) { --47jb. + "-' [ _kj2rri'_'5-_ exPl. -_"nj+

j=O

exp {k(2n .. 2_-i)1= exp

= ek'_i/2b,_+_[exp{kj_7_n}+(-1,k
j--0

,,-1 (_l)k'b,_

2 Ei=o cos(k'j_r/n)bj +

• n.--121£,_., sin((k' - 1/2)j, /n)bj +

exp(-kJ_-n/}] bj

for k = 2k'

for k=2k'-I

Thus if b0 is doubled, the even and odd k values are given by cosine and shifted sine

transforms respectively:

k(2k) = 2(TNNb)(k)

k(2k- 1) = 2i(TDNb)(k). (D.99)

Real arithmetical operation counts, as coded, for the transform algorithms de-

scribed above are given in table D.3.
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Length N Transforms Real Operation Count

Complex FFT (5 log 2 N)N

Paired Real (5 + 5 log 2 N)N

Paired Sine (13 + 5log 2 N)N

Paired Cosine (14 + 5log 2 N)N

Single real with

zero-extended datat

(14 + 5log 2 N)N

Paired real with

symmetric, zero-

extended data:[:

(30 + 10 log 2 N)N

Paired shifted sine

or cosine
(12 + 5 log 2 N)N

Paired dual shifted

sine or cosine

(18 + 5 log 2 N)N

tData is b0, ..., bN, 0, ..., 0 (length 2N).

_Data is bo, ..., bN-1, blv, bN-1, ..., bo, 0, ..., 0 (length 4n).

Table D.3: Transform Operation Counts
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D.3.3 Implementation of the James Algorithm

The basic theory of the algorithm described in section D.1.2 is straightforward, but

several complications arise during the implementation. These come from the handling

of the 6 planes that constitute the boundary of the computational box R, especially

in phase 2 (boundary convolution). In addition, the presence of one or more planes

of symmetry entails major modifications.

The present implementation differs considerably from the description of James[89],

whose method uses complex manipulations of sine and cosine transforms to conserve

memory during the boundary convolution. We the process by combining these trans-

forms into standard real and complex transforms. Several extra scratch planes are

used to achieve major gains in vectorization, as well as simplification.

At the highest level the algorithm is divided into three separate, but parallel,

paths for (1) no planes of symmetry (2) only a Y plane of symmetry (3) both Y and

Z planes of symmetry. If there is only a Z plane of symmetry, the Y and Z data are

interchanged before and after doing the Y only algorithm. Within paths (2) and (3)

there is a choice as to whether a plane of symmetry is located on the left (origin) or

right. For example, if the computational box is represented by

R = [0, × [0, × [0,mz]

with coordinates i,j, k, then a Y plane of symmetry may be specified either by j = 0

or j = my. The algorithm assumes the j = r% case, and simply reverse the Y data

before and after if it is the j = 0 case. The algorithm could be formulated the other

way around just as easily.

Phase 1

The basic method used to solve the Dirichlet problem (D.71) for the interior solution

0 is to use X and Z sine transforms and a tridiagonal solver, as in formula (D.88).

However, instead of completing the interior solution in phase 1, the inverse X and Z

sine transforms are delayed to phase 3, where they are combined with the inverse X

and Z transforms for _,. This is possible because phase 2 requires only the boundary

charge function (7, which in turn needs only 0 values next to the edge of the box. For

example, the computation of _r on the i = 0 plane, denoted by auz0, reduces to

a_,zo(j,k) = Q(j,k)-(D20)(O,j,k)

= Q(j,k)-O(1,j,k)/Az 2 (D.IO0)

since 0 is zero outside R and on OR.

Using (_, _, 3` to indicate sine transformed coordinates, 0(1, j, k) can be computed

explicitly by

" _ sin 0(o_,j, 3`). (D.101)
O(1,j, 3`) = rn_: _=l

Then an inverse sine transform in Z is applied to get O(1,j, k). Similarly

O(m_ 1,j, 7) 2 "_-' ),_-1 (c_ _r)- = _ _ (-1 sin -_ O(c_,j, 3,). (D.102)
rt2:r et=l

225



Actually it is better to replace (D.101) and (D.102) by

2
e(j,_) - __sin(2a z-.-_-.)O(2a, j,.y)

/ x

mx a=l \ Tnx /

o(j,.7 ) _ 2 :)-_sin (2c_-1) O(2a - l, j, "7)
_z a=l

O(1,j,'7) = o(j,',/)+e(j,_/)

O(m, - 1,j, _) = o(j, _/) - e(j,'7)

(D.103)

for n, = (rn_, - 1)/2 and no = m_/2. Of course the sine factors in (D.40) are pre-
computed.

If there is a Z plane of symmetry, the major difference is that Z sine transforms are

replace by shifted sine transforms, according to table D.2, since the symmetry plane

(= zero Neumann boundary condition) is assumed to be on the right. This also means

that the sine term in (D.101) is replaced by the shifted sine term sin((a - _)Tr/rnz)
when computing 0(a, j, 1).

If there is a Y plane of symmetry, the major difference is in the tridiagonal solver.

By (D.73) there is a 2 in the subdiagonal of the bottom row, so the algorithm described

in section D.3.1 is modified accordingly.

Phase 2

The basic idea of the boundary convolution is to zero extend the box R, doubling its

size in each dimension, in order to compute ¢ on OR by

¢ = G * a + Ge * r = (G& + _a#)v. (D.104)

According to (D.41) the downstream source convolution Ga • r is to be interpreted

in the following way. Let F, = forward DFT in X, etc. Then

(ad*r)(i,j,k) - (Gd(i,.,.))*r(j,k)

= F:-'F_" ((F_"Gd)(FuF, r))

= F:'Fe'F;' (Gd(FuF, r)). (D.105)

This means that FFT's are first applied to the 6 boundary planes of a. Then, in a

loop over the Z index, an XY plane of & is assembled from the 6 transformed planes.

At the same time an XY plane of G is assembled from its 3 plane representation (D.37)

and a plane of Gd from its 4 plane representation (D.49). Then the multiplications

and additions in (D.104) are done to get _,. Still inside the Z loop, some of the

inverse DFT's are performed explicitly to get 6 boundary planes. After the Z loop,

the remaining inverse DFT's are applied to these boundary planes to get g.,]0n.

Let's look at the transformation of the YZ boundary planes, a_0 and au.q, in more

detail. Since these are real, we may start with a real transform in Z. Next apply a

complex transform in Y. The transform in X reduces to a butterfly operation (addition
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and subtraction), with the sumof the two planesgiving the evenfrequenciesand the
differencethe odd frequencies:

&y,(t3, 7, po) - &_zo(3,7) + (-1)_&_,, (3, "y) (D.106)

for p_ = a mod 2.

If there is a Y plane of symmetry, the Y transform becomes a transform of symmet-

ric, zero-extended data with frequencies from 0 to 2rn u. By (D.99) the odd frequencies

may be represented as nominally real values, like the even frequencies, but with an

implicit scaling by i. If this is applied to the single XZ boundary plane, the result is

just scaling by 2 for even frequencies and zero for odd frequencies:

{ 2&_z(a,7) for _ even
&_(a, 7) := (D.107)

0 for fl odd.

The same methods apply to the transforms and inverse transforms of the other bound-

ary planes.

By (D.106) an XY plane of & may be assembled by the following formula:

&(c_, 13, 7) = b_,(13, 7, P_,) + &=,(c_, 7,Pa) + a,_(o, fl, p.,). (D.10S)

One way to do this is by adding the XY and XZ planes while vectorizing in X:

t(a, _) = &,=(o, 7,Pa) + &_u( a, fl, P-,). (D.109)

Then complete (D.107) and at the same time use (D.104) and (D.105) to do the

Green's function multiplications, taking advantage of operation chaining while vec-

torizing in Y:

_(o,/3,7)=(&u,(13,7, p_)+t(a, t3))G(o_,t3,7)+ _'(13, 7)Od(a, 13, 7) (D.110)

If there is a Y plane of symmetry, (D.107) shows that (D.109) is just a copy for

odd fl and addition of the single XZ plane for even/3. If there is also a Z plane of

symmetry, (D.109) is only addition for/3 and 7 both even, and is zero if both are odd.

Furthermore, in (D.110) &u, and ¢" are nominally real, with only implicit scaling by i

for odd B and 7. Thus the nominally imaginary part of (D.110) reduces to

Im(¢(a,13,7)) := Im(t(a, fl))G(a, 13,7). (D.111)

According to the Z inverse DFT formula, the boundary XY planes may be computed

from _b by butterflying the sums of tile even and odd Z index values:

1 rnz--I

- >y)
e(o,, -,=o

= -,=o

A

=
(D.II2)

(D.11.3)
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The sums in (D.112) are accumulatedin the Z loop with the butterflies and scaling
done later asan inverseoperation to the butterflies (D.106).

A way to gain efficiencyis to let the Z loop run only from 1 to ra, - 1 and set

_(a,_,2m, - _) = _,(2m, - a,2m_ - 3, 7), (D.114)

which follows directly from the DFT formula. In the case of Y symmetry (D.114)

may be replaced by

_;(a,3,2rn_ - 7) = (-1)_'(2m_ - a,3, 7) (D.115)

according to formula (D.99). In case of Z symmetry, the loop runs from 0 through

2m, and (D.114) may be replaced by

- 7) = (D.116)

That is, the odd frequencies sum to zero and the even ones are doubled except at the

endpoints 0 and 2mz.

The boundary XZ and XY planes are computed by the same principle of summing

even and odd index values, but with complete computation of an X or Y line done all

at once each time through the Z loop. For example, if there is a Y plane of symmetry,

the even and odd /3 sums of 6 reduce to just doubling the even values, except for

endpoints, by the Y symmetry analog of (D.116).

Phase 3

The method used in phase 1 is applied again in phase 3, but specialized to zero

interior sources. This means that, for example, the two YZ boundary planes _/'u_0

and _#_,1 are converted to equivalent sources at positions i = 1 and i = m_,- 1

respectively by scaling by -1/Ax 2, according to (D.71). Now sine transform in Z to

get 7 coordinates. Next, the sine transform in X to get a coordinates reduces to the

following.

-1 (art) _1_,_b_z(a,j, 7,p_)= Ax-------_sin _ (_/'_zo(j, 7)+( ) _by_(j, 7)) (D.117)

for po = a mod 2. The butterfly operations in (D.117) are done before the Z loop,

and the precomputed sine factors are multiplied inside the loop. There is a formula

analogous to (D.117) for the transformed XY boundary planes ¢xy(a,j,%p._). The

XZ boundary planes require full X and Z sine transforms plus scaling by -1/,_y 2.

Denote them by _'xz(a, 7, 0) and _b_z(a, 7, 1) . Then inside the Z loop the transforms

of the 6 boundary planes are summed to get an XY plane t as follows.

= _by,(a,j,_/,p,_) + g'_y(a,j,q,p._) +

6(j - 1)_,(_, 7,0) + 6(j- rn u - 1)_/'==,(a, 7, 1).

(D.118)
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In the case of Y symmetry, there is only one XZ plane. In the case of Z symmetry

there is only one XY plane, and shifted sine transforms are used. The tridiagonal

solver is applied to the plane t, and the result is added to the corresponding plane of

O(a,j, 7), saved from phase 1.

After the Z loop, the inverse X and Z transforms are applied to get 8 in the interior

of the box, and the original 6 boundary planes are copied onto its boundary.
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Appendix E

SPARSE SOLVER

In this appendix, the general purpose sparse solver that is used to factor the sparse

matrix is discussed. The sparse matrix is used as a left preconditioner in the solu-

tion of the discrete equations, see Section 2.4. The sparse solver was designed for

general usage to solve much larger problems than are feasible with existing sparse

matrix software. The solver has a general input capability allowing contributions

to matrix elements to be entered in any order. These contributions are sorted and

combined to produce the final matrix. This feature is particularly convenient with

finite elements, where element stiffness matrices can be generated in any order. The

solver is out-of-core so that quite large problems can be solved on current comput-

ers. Gaussian elimination is performed by block rows, additional blocks being created

as fill is generated. The sparse solver takes full advantage of the hardware features

on Cray computers including gather/scatter, vector compress, and large out-of-core

memory afforded by the SSD on the Cray X-MP or Cray Y-MP. Considerable atten-

tion has been devoted to making all phases of setting up and solving matrix problems

convenient and efficient. A description of these phases including ordering the ma-

trix elements to minimize the fill-in, matrix assembly, matrix decomposition, and the

forward and backward substitution is presented.

E.1 NESTED DISSECTION ORDERING

For large-sparse problems, a matrix decomposition preconditioner is practical only if

the decomposition is also sparse. This is true not only because of storage limitations,

but also because of the CPU time required for forward and back substitution. One

key to maintaining sparsity is a good permutation ordering for the rows and columns

of the matrix. For sparse matrices resulting from standard discretizations of elliptic

partial differential equations on uniform rectangular grids nested dissection has been

shown to be asymptotically optimal [97].

In TRANAIR a physically based version of nested dissection suitable for grids

with local refinements has been implemented. One advantage of this method is that

it does not require an examination of the graph of the matrix. The algorithm acts

recursively on subsets of nodes (grid points). In TRANAIR, the discretization used
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Figure E.I: Block Structure of a Sparse Matrix Ordered with Nested Dissection.

near boundary surfaces can locate several solution unknowns at a same grid node

location. The first such subset is the set of all nodes in the reduced set. For a

set of nodes A/" the algorithm finds a set of nodes A/'a called a dissector. Writing

A/" = A/'d U .Aft U A/',, where _ consists of nodes on one side of N'a and Af_ those on

the other. The dissector has the property that an unknown at any node on one side
has a stencil that does not include unknowns located at nodes on the other side.

The permutation is produced by ordering the nodes in the dissector last. Figure E.1

shows the block structure of this matrix. The blocks of zeros remain intact, preserving

sparsity during the decomposition. For a structured grid a plane of points forms a

suitable dissector for a standard 27 point stencil.

In TRANAIR, dissectors are generated by first taking a cutting plane perpendic-

ular to a coordinate axis and finding the set/3 of all boxes intersecting this plane by

interrogating the oct-tree data structure (see Appendix A). Taking the case when

the cutting plane is perpendicular to the x axis, the dissector of all nodes on the

left hand (negative x) face of boxes in /3 that are also in A/'. This will provide a

dissector except near pseudo-nodes where the stencil is altered (see Section 2.3.5).

When a pseudo-node is in the dissector its parent nodes must also be included in

the dissector. Figure E.2 shows examples (in two dimensions) of cutting planes and
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corresponding sets of nodes in the dissectors.

There are two guiding principles that aid in producing an effective nested dissection

ordering. The first is that the components .M1 and N', resulting from the dissection

be of approximately equal size. The second is that the dissectors contain as few

unknowns as possible. (The size of the dissectors can vary due to local refinement

and the location of boundaries.) These principles can conflict and some compromise

is necessary. The cutting plane is selected to have x coordinate equal to that of the

node in .M with median x coordinate. Dissectors perpendicular to each of the three

coordinate axes are tested and the one yielding the smallest dissector is chosen. The

process is repeated recursively on the newly formed components resulting from each

dissection until all remaining components contain fewer than 50 nodes.

The above algorithm is modified when regions of supersonic flow are present in

the full potential case because upwinding of the density enlarges the stencil (see

Section 2.3.7). If the cutting plane intersects a box which contains supersonic flow or

is adjacent to such a box then all the nodes of the box are included in the dissector.

E.2 MATRIX ASSEMBLY

Contributions to the global stiffness matrix are generated on an element by element

basis, i.e., element stiffness matrices are input one by one. This order is unrelated to
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the ordering of the unknowns used for the decomposition. Thus, the contributions

must be sorted and coalesced to produce the final global stiffness matrix. This process

consists of four steps and is illustrated in the case of two blocks and a 3 by 3 matrix

in Figure E.3.

Each contribution is described by a numerical value (denoted by a letter) and by

row and column indices. The four steps are as follows:

• 1. All contributions are collected in equal sized blocks and stored out of core.

2. Each block is returned to main memory and sorted by row index, resulting

in an ordered sequence of row groups within each block. A row group is a group

of contributions all having the same row index. A simple bucket sort algorithm

[98] seems to be the most efficient for this purpose.

3. These sorted blocks are then merged into ordered chains of blocks. An

ordered chain is a chain of blocks such that all contributions in a given block

have row indices less than or equal to those in all subsequent contributions in

that block and the remaining blocks of the chain. Merging two chains consists

in interleaving their row groups so that the resulting chain is also sorted by row

index. At a given stage, the two shortest chains are always merged. Ultimately,

the result is a single chain of blocks. Because the contributions are not sorted by

column index at this stage, all movement of elements can be done by row group.

This allows vectorization of the merge algorithm.

4. All contributions to the same matrix element are then coalesced, i.e., within

each row group, contributions with common column indices are added to form a

single contribution. Coalescing can be done without first sorting each row group

by column index.

Note that most elements of the global stiffness matrix have contributions from

8 element stiffness matrices in subsonic regions and as many as 64 in supersonic

regions. Thus, the number of contributions may be up to 125 times greater than the

number of elements in the assembled global stiffness matrix. In order to minimize

storage requirements, the above four step process is performed repeatedly. (It can

be performed at any point in the generation of contributions to the stiffness matrix.)

When this is done, chains which have already been formed are not merged until new

chains of equal size exist. Row groups are sorted by column index using a bucket sort

only after completion of contribution input and coalescing.

E.3 MATRIX DECOMPOSITION

During the decomposition phase, the matrix is stored in a row format. For the

purposes of transferring information between main memory and the SSD, the matrix

is partitioned into row blocks. For each element of the matrix, two storage locations

are used, one to store the element and the other to store its column index. Optionally,

the matrix element and the column index can be packed into one word of storage. In
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a b cI1 1 , 1 ,1I ,1d , h i...... 3,2

Merge two blocks into a

a b c "
1.211,3t1,1]_.11Jl,2

chain of blocks

l Ih lira Id e i2.212.3112,313.113.3 151...... 3,2

Coalesce all contributions to the same matrix element

c+f] 1 h+n| ] d _+i k+e]
1.1l [ Jl b I

1,3,2,2 12,31 I 113,1 3_2 I 3,3 I I I
Figure E.3: Sorting and Merging Procedure.

this mode, the 64-bit storage location devotes 43 bits to the matrix element and 21

bits to its column index. Word packing reduces the SSD storage required to hold the

matrix decomposition. Moreover, the CPU time required to perform the packing and

unpacking is compensated for by the reduced time spent referencing memory. As a

result, the word packed version of the sparse solver actually runs slightly faster than

the unpacked version.

Decomposition of the matrix is accomplished by Gaussian elimination. (For sparse

matrix problems arising in TRANAIR no pivoting has yet been found necessary for

numerical stability.) Each element in the lower triangle is eliminated in turn through

a sparse SAXPY (SPAXPY) operation with the appropriate row. The multiplier

becomes the corresponding element of the L matrix, and the appropriate U matrix

row is modified by the SPAXPY operation. Each row block is decomposed, and

when finished, used to eliminate corresponding lower triangular elements from all

subsequent row blocks. As fill-in occurs the row blocks must be repartitioned and

new row blocks added. An input/output package has been developed that does this

automatically so that formally the code need only fetch or store any given row. When

all lower triangular elements of a given row have been eliminated, small elements in

the upper triangular part of the row can be dropped if they are small relative to

the current row or column diagonal for that element. The criterion chosen depends

on whether the problem is deemed well scaled row-wise or column-wise. The lower

triangular elements are dropped in a similar fashion as they are eliminated, obviating

the need for a SPAXPY operation.

Unlike many sparse matrix solvers, there is no reliance on a symbolic factorization

to facilitate the matrix decomposition. Instead, an explicit search is carried out to

find the nonzero elements created during the matrix decomposition. This strategy

allows the easy implementation of drop tolerances as required for the large problems
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discussed in the following sections.

As pointed out in the sparse matrix literature (for example, [99]), searching for

nonzero elements would be prohibitively expensive on a normal scalar machine. For-

tunately, the hardware vector mask and vector compress feature on the Cray X-MP

allows us to perform the searches efficiently. For the largest problems solved to date

involving extensive use of drop tolerances (those problems incurring the maximum

penalty for nonzero searching), about 40 percent of the total decomposition cost is

taken by the searches for the next nonzero element below the diagonal to be elimi-

nated. Another 40 percent of the cost of the decomposition is taken by the SPAXPY

operations which would be required whether or not a symbolic factorization was avail-

able. The final 20 percent is taken by searching for the nonzero elements in the upper

part of the matrix created by the SPAXPY operations. (The number of searches of

this type depends on the size of blocks that can be held in core relative to the size

of the LU decomposition. This 20 percent can be thought of as penalty for being

out-of-core.) Thus in the worse case, for the moderately sparse matrices encountered

in applications, the searches for nonzero elements increase the cost by about a factor

of two. This cost is more than offset by the ability to introduce a drop tolerance.

E.4 FORWARD/BACKWARD SUBSTITUTION

The final phase is the forward/backward substitution. For problems requiring solu-

tions for many right-hand sides, the substitution phase can be more expensive than

the decomposition phase. Therefore, it is important to minimize the cost of the

forward/backward substitution phase. For the short vector lengths characteristic of

sparse matrix operations, a sparse vector dot product typically takes twice as long as

a SPAXPY on the Cray X-MP. To take advantage of the relative speed of SPAXPY

operations during the solution phase, instead of solving Ax = b, the equivalent system

xtA t = bt is solved. Specification of the transposed problem is easily accomplished by

transposing the row and column indices as they are collected.

E.5 PERFORMANCE

Typically, the matrices have between 30,000 and 300,000 rows with 20-30 nonzeros

per row in subsonic flow. In regions of supersonic flow, there are 100-120 nonzeros

per row. This increase is due to the larger operator stencil necessary to include the

upwinding needed to rule out expansion shocks [22]. Without the use of a drop toler-

ance, significant fill-in occurs during the decomposition yielding a decomposed matrix

with 10-30 times the number of nonzero entries in the original matrix. For many large

problems, the memory required by a full decomposition would be too large for the

SSD. Because the matrix is used as a preconditioner to solve the problem iteratively,

it is not essential that the decomposition be exact. During the decomposition ele-

ments are dropped when they are less than a specified fraction (the drop tolerance)

of the current diagonal element . With a suitable choice of drop tolerance, CPU time
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and memory use for the decomposition are reduced by up to an order of magnitude

with only a slight degradation in convergence rate.

Table E.I: Performance Characteristics for the Sparse Solver with No Drop Toler-

ance. Ten to Twenty Nonlinear Newton Steps are Required for each Solution. Each

Linearized Solution Requires about 10 GMRES Iterations.

Matrix Decomp CPU sec Decomp

equations CPU sec per iteration (MW)

10,018 20 1 3

30,267 280 3 11

36,627 230 4 16

50,655 620 3 29

63,069 420 6 26

Table E.2: Performance Characteristics for the Sparse Solver with Drop Tolerance.

Each Linearized Solution Requires About 20-40 GMRES Iterations.

Total Matrix Drop Decomp CPU second Decomp

equations equations tolerance CPU sec per iteration (MW)

18,376 11,514 0.0010 7 0.2 1.5

24,304 15,051 0.0010 11 0.4 2.2

37,702 18,731 0.0010 13 0.4 2.4

61,863 44,537 0.0010 41 0.9 6.7

124,878 81,216 0.0005 91 1.3 12.6

236,970 167,500 0.0010 246 2.8 26.4

247,703 156,659 0.0008 241 3.3 28.6

268,301 192,238 0.0010 311 3.1 30.8

284,052 181,802 0.0008 297 4.1 30.6

288,333 207,827 0.0010 405 3.5 40.0

373,813 241,474 0.0010 631 5.8 54.0

480,907 330,857 0.0008 882 6.8 64.6

Tables E.1 and E.2 give the computer times for decomposition of the reduced

set matrix for several representative cases run TRANAIR with and without a drop

tolerance as well as the computer time required for each GMRES iteration. The

storage required for the decomposition (using no word packing) is also shown and is

equal to twice the number of nonzero entries in the decomposition.

Table E.2 gives both the number of equations in the reduced set (the size of the

problem given to the sparse solver) and the total number of degrees of freedom.

The size of the sparse matrix varies from about 10,000 unknowns to around 330,000

unknowns. Note that with the use of a drop tolerance, the decomposition costs are
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Figure E.4: Cost versus drop tolerance for the ONERA M6 TRANAIR solution.

reduced by nearly an order of magnitude. The costs per iteration are also reduced by

about a factor of two. For each linear problem 10-20 iterations required to converge

the solution when no drop tolerance is used. By using a drop tolerance in the range

0.001-0.0001 these numbers are increased to 20-40 iterations. However, since the

cost per iteration has been reduced by a factor of two, this helps to compensate for

the increase in number of iterations. For drop tolerance in this range the size of the

decomposition is between two to five times the size of the original matrix.

Memory limitations make it impossible to test the effect of a full range of drop

tolerances for a large problem. However, for a small problem with 28,050 finite

elements serves to illustrate the effect of drop tolerance on the decomposition and

overall solution costs. Figure E.4 illustrates total solution costs as a function of drop

tolerance for a fluid dynamics problem (an ONERA M6 wing in transonic flow).

Figure E.5 illustrates the SSD resource requirements. It is clear that there is a

minimum in the total cost for drop tolerances in the range of 10 .4 . When higher drop

tolerances are used, the decomposition costs continue to decrease, but the iterative

costs begin to increase due to the larger number of iterations required to reach a

given level of convergence. For this configuration, a drop tolerance in the range of

10 -a produces a slight increase in CPU time over the optimal value, but (Fig. E.5)

significantly reduces the amount of SSD storage required (by more than a factor of

two). CPU time must be balanced against the SSD storage requirements. Thus

some experimentation may be required to determine an appropriate value of drop

tolerance. For larger problems, the amount of SSD storage may become the critical

limiting factor. The reduction in SSD storage for larger problems can be as high as

a factor of 20 with an appropriate choice of drop tolerance.

238



_5

t-n

11.

10

9,

8

7

6.

5.

4.

3

2.

1,

0

1E-14

\
\

\

\
\

\

Subsonic Flow _

IE'-11 IE'-08 IE:05 0.01 10

Drop Tolerance

Supersonic Flow

Figure E.5: SSD storage versus drop tolerance for the ONERA M6 TRANAIR solu-

tion.

239





References

[1]

[2]

[3]

[4]

Goldhammer, M. I.; and Rubbert, P. E.: CFD in Design--An Airframe Perspective.

AIAA Paper 89-0092, Jan. 1989.

Tinoco, E. N.; and Rubbert, P. E.: Impact of Computational Aerodynamics on Aircraft

Design. AIAA Paper 83-2060, Aug. 1983.

Miranda, L. R.: Transonics and Fighter Aircraft: Challenges and Opportunities for CFD.

NASA CP-3020, vol. 1, part 1, 1989, pp. 153-173.

Hess, J. L.; and Smith, A. M. O.: Calculation of Nonlifting Potential Flow about Art-

ibrary Three Dimensional Bodies. ES40622, Douglas Aircraft Co., Long Beach, Calif.,

1962.

[5]

[6]

[7]

[8)

[9]

[10]

Rubbert, P. E.; and Saaris, G. R.: Review and Evaluation of a Three Dimensional Lifting

Potential Flow Computational Method for Arbitrary Configurations. AIAA Paper 72-

188, Jan. 1972.

Roberts, A.; and Rundle, K.: Computation of First Order Compressible Flow about

Wing-Body Configurations. (Available to U.S. Government agencies only.) S/T-MEMO-

14173, British Aircraft Co., 1973.

Morino, L.; and Kuo, C.-C.: Subsonic Potential Aerodynamics for Complex Configura-

tions: General Theory. AIAA Journal, vol. 12, no. 2, 1974, pp. 191-197.

Johnson, F. T.; and Rubbert, P. E.: Advanced Panel-Type Influence Coefficient Methods

Applied to Subsonic Flows. AIAA Paper 75-50, Jan. 1975.

Bristow, D. R.; and Grose, G. G.: Modification of the Douglas Neumann Program to

Improve the Efficiency of Predicting Component Interference and High Lift Character-

istics. NASA CR-3020, 1978.

Johnson, F. T.: A General Panel Method for the Analysis and Design of Arbitrary

Configurations in Incompressible Flows: Boundary Layer Problem. NASA CR-3079,

1980.

[11]

[12]

[13]

Ehlers, F. E.; Epton, M. A.; Johnson, R. T.; Magnus, A. E.; and Rubbrt, P. E.: A Higher

Order Panel Method for Linearized Supersonic Flow. NASA CR-3062, 1979.

Carmichael, R. L.; and Erickson, L. L.: PANAIR: A Higher Order Panel Method for Pre-

dicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations.

AIAA Paper 81-1255, June 1981.

Dusto, A. R.; and Epton, M. A.: An Advanced Panel Method for Analysis of Arbitrary

Configurations in Unsteady Subsonic Flow. NASA CR-152323, 1980.

241

PRECEDING P_GE BLANK I.IOT Flt.MED



[14]

[15]

[16]

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

[25]

[26]

Rowe, W. S.; Winther, B. A.; and Redman, M. C.: Prediction of Unsteady Aerodynamic

Loadings Caused by Trailing Edge Control Surface Motions in Subsonic Compressible

Flow-Analysis and Results. NASA CR-2003, 1972.

Tinoco, E. N.; Ball, C. N.; and Rice, F. A. II: PAN AIR Analysis of a Transport High

Lift Configuration. AIAA Paper 86-1811, June 1986.

Dusto, A. R.: Aerodynamic Analysis of a Fighter Aircraft with a Higher Order Panel-

ing Method. Technical Report AFWAL-TR-80-3115, Wright-Patterson Air Force Base,
Ohio, 1980.

Murman, E. M.; and Cole, J. D.: Calculation of Plane Steady Transonic Flows. AIAA

Journal, vol. 9, no. 1, 1971, pp. 114-121.

Bailey, F. R.; and Ballhaus, W. F.: Relaxation Methods for Transonic Flow about Wing-

Cylinder Combinations and Lifting Swept Wings. Proc. Third International Congress

on Numerical Methods in Fluid Dynamics, Volume 2, Springer-Verlag, 1972, pp. 2-9.

Jameson, A.: Iterative Solution of Transonic Flows Over Airfoils and Wings, Including

Flows at Mach 1. Communications on Pure and Applied Mathematics, vol. 27, no. 3,
1974, pp. 283-309.

Caughey, D. A.; and Jameson, A.: Numerical Calculation of Transonic Potential Flow

About Wing-Fuselage Combinations. AIAA Paper 77-677, June 1977.

Ballhaus, W. F.; Jameson, A.; and Albert, J.: Implicit Approximate-Factorization

Schemes for the Efficient Solution of Steady, Transonic Flow Problems. AIAA

Paper 77-634, June 1977, pp. 27-34.

Hafez, M. M.; Murman, E. M.; and South, J. C.: Artificial Compressibility Methods for

Numerical Solutions of Transonic Full Potential Equation. AIAA Paper 78-1148, July
1978.

Bristeau, M. O.; Glowinski, R.; Periaux, J.; Perrier, P.; Pironneau, O.; and Poirier,

G.: Application of Optimal Control and Finite Element Methods to the Calculation

of Transonic Flows and Incompressible Viscous Flows. Numerical Methods in Applied

Fluid Dynamics, B. Hunt, ed., Academic Press, London, 1980, pp. 203-312.

Holst, T. L.: A Fast, Conservative Algorithm for Solving the Transonic Full-Potential

Equation. AIAA Paper 79-1456, July 1979.

Holst, T. L.; and Ballhaus, W. F.: Fast, Conservative Schemes for the Full Potential

Equation Applied to Transonic Flows. AIAA Journal, vol. 17, 1979, pp. 145-152.

Boppe, C. W.; and Stern, M. A.: Simulated Transonic Flows for Aircraft with Nacelles,

Pylons and Winglets. AIAA Paper 80-0130, Jan. 1980.

242



[27] Yu, N. J.: Grid Generationand Transonic Flow Calculations for Three Dimensional
Configurations. AIAA Paper 80-1391,July 1980.

[28] Lee,K. D.: 3-DTransonicFlow ComputationsUsingGrid Systemswith BlockStructure.
AIAA Paper 81-0998,June 1981.

[29] Jameson,A., Schmidt, W., and Turkel, E.: Numerical Solutions of the Euler Equa-
tions by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes.AIAA
Paper 81-1259,June 1981.

[30] Chakravarthy, S. R.; and Osher,S.: A New Classof High AccuracyTVD Schemesfor
Hyperbolic ConservationLaws.AIAA Paper 85-0363,Jan. 1985.

[31] Pulliam, T. It.: Euler and Thin Layer Navier-StokesCodes:ARC2D, ARC3D. Compu-
tational Fluid Dynamics, K. C. Reddyand J. S.Steinhoff,eds.,University of Tennessee
SpaceInstitute, Publication No. E02-4005-023-84,Tullahoma,TN, 1984,pp. 15.1-15.85.

[32] MacCormack,R. W.: Current Statusof Numerical Solutionsof the Navier-StokesEqua-
tions. AIAA Paper 85-0032,Jan. 1985.

[33] Thomas,J. L.; and Walters,R. W.: Upwind RelaxationAlgorithms for the Navier-Stokes
Equations. AIAA Paper 85-1501,July 1985.

[34] Jameson,A.: Transonic Flow Calculations. Department of Mechanicaland Aerospace
Engineering,Report No. 1651,Princeton University, 1983.

[35] Martinelli, L.; Jameson,A.; and Grasso,F.: A Multigrid Method for the Navier-Stokes
Equations.AIAA Paper 86-0208,Jan. 1986.

[36] Rubbert, P.E.; Bussoletti, J. E.; Johnson,F. T.; Sidewell,K. W.; Rowe,W. S.; Samant,
S.S.; SenGupta,G.; Weatherill, W. H.; Burkhart, R. H.; Everson,B. L.; Young, D. P.;
andWoo, A. C.: A New Approachto the Solutionof BoundaryValueProblemsInvolving
Complex Configurations. Computational Mechanics-Advancesand Trends, Ahmed K.
Noor, ed., the American Societyof MechanicalEngineers,New York, 1986,pp. 49-84.

[37] Samant,S.S.;Bussoletti, J. E.; Johnson,F. T.; Burkhart, R. H.; Everson,B. L.; Melvin,
R. G.; Young, D. P.; Erickson,L. L.; Madson, M. D.; and Woo, A. C.: TRANAIR: A
Computer Code for TransonicAnalysesof Arbitrary Configurations. AIAA Paper 87-
0034,Jan. 1987.

[38] Everson,B. L.; Bussoletti, J. E.; Johnson,F. T.; Samant,S. S.; Erickson, L. L.; and
Madson, M. D.: TRANAIR and its NAS Implementation. Paper presented at the
NASA Conferenceon "Supercomputingin Aerospace,"NASA Ames ResearchCenter,
March 10-12,1987.

[39] TRANAIR Computer Code(Theory Document).NASA Contract Report NAS2-11851,
Boeing Military Airplane Company,1987.

243



[4o]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

EM-TRANAIR: A Computer Program for the Solution of Maxwell's Equations in Three

Dimensions: Volume 1, Theory Manual. AFWAL-TR-87-3082, volume 1, 1987. (Limited

to U.S. Government agencies and contractors.)

Samant, S. S.; Bussoletti, J. E.; Johnson, F. T.; Melvin, R. G.; and Young, D. P.: Tran-

sonic Analysis of Arbitrary Configurations using Locally Refined Grids. Proceedings

of the l lth International Conference on Numerical Method in Fluid Dynamics, 1988,

pp. 518-522.

Young, D. P.; Melvin, R. G.; Bieterman, M. B.; Johnson, F. T.; Samant, S. S.;

and Bussoletti, J. E.: A Locally Refined Rectangular Grid Finite Element Method.

Report SCA-TR-108-R1, Boeing Computer Services, Seattle, Washington, 1989.

Young, D. P.; Melvin, R. G.; Johnson, F. T.; Bussoletti, J. E.; Wigton, L. B.; and

Samant, S. S.: Application of Sparse Matrix Solvers as Effective Preconditioners. SIAM

J. Sci. Stat. Comput., vol. 10, no. 6, 1989, pp. 1186-1199.

Bussoletti, J. E.; Johnson, F. T.; Young, D. P.; Melvin, R. G.; Burkhart, R. H.;

Bieterman, M. B.; Samant, S. S.; and SenGupta, G.: TRANAIR Technology: Solutions

for Large PDE Problems. Solution of Superlarge Problems in Computational Mechanics,

J. H. Kane and A. D. Carlson, eds., Plenum Press, New York, 1989, pp. 95-124.

Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.;

Bussoletti, J. E.; and Madson, M. D.: Application of the TRANAIR Rectangular Grid

Approach to the Aerodynamic Analysis of Complex Configurations. AGARD-CP-464,

1989, pp. 21.1-21.12.

Melvin, R. G.; Bieterman, M. B.; Young, D. P.; Johnson, F. T.; Samant, S. S.; and

Bussoletti, J. E.: Local Grid Refinement for Transonic Flow Problems. Proceedings of

the Sixth International Conference on Numerical Methods in Laminar and Turbulent

Flow, Volume 6, Part 1, C. Taylor, P. Gresho, R. L. Sani, and J. H_iuser, eds., Pineridge
Press, 1989, pp. 939-950.

Bieterman, M. B.; Bussoletti, J. E.; Hilmes, C. L.; Johnson, F. T.; Melvin, R. G.;

Samant, S. S.; and Young, D. P.: Solution Adaptive Local Rectangular Grid Refinement

for Transonic Aerodynamic Flow Problems. Report ECA-TR-126, Boeing Computer

Services, Seattle, Washington, 1989. Proc. 1989 GAMM Conference on Numerical Meth-

ods in Fluid Mechanics, Delft, The Netherlands, September 1989 in Notes on Numerical

Fluid Mechanics, Volume 29, Vieweg Verlag, 1990.

Young, D. P.; Melvin, R. G.; Bieterman, M. B.; Johnson, F. T.; and Samant, S. S.: Global

Convergence of Inexact Newton Methods for Transonic Flow. Report ECA-TR-124-R1,

Boeing Computer Services, Seattle, Washington, 1989.

Chen, A. W.; Curtin, M. M.; Carlson, R. B.; and Tinoco, E. N.: TRANAIR Applications

to Engine/Airframe Integration. AIAA Paper 89-2165, July 1989.

244



[50] Goodsell,A. M.; Madson, M. D.; and Melton, J. E.: TranAir and Euler Computations
of a GenericFighter Including Comparisons with Experimental Data. AIAA Paper 89-

0263, Jan. 1989.

[51] Tseng, W.; Feinberg, E.; and Cenko, A.: TRANAIR Applications to Fighter Configura-

tions. AIAA Paper 89-2220, July 1989.

[52] Bateman, H.: Irrotational Motion of a Compressible Inviscid Fluid. Proc. National

Academy of Sciences, Volume 16, 1930, p. 816.

[53] Saad, Y.; and Schultz, M. H.: GMRES: A Generalized Minimal Residual Algorithm for

Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., vol. 7, no. 3, 1986,

pp. 856-869.

[54] Wigton, L. B.; Yu, N. J.; and Young, D. P.: GMRES Acceleration of Computational

Fluid Dynamics Codes. AIAA Paper 85-1494, July 1985.

[55] TRANAIR User's Manual, NASA Contract NAS2-12513, The Boeing Company, Oct.

1989.

[56]

[57]

[58]

[59]

[6o]

[61]

[62]

[63]

Weiser, A.: Local-Mesh, Local-Order, Adaptive Finite Element Methods with A Pos-

teriori Error Estimators for Elliptical Partial Differential Equations. Yale University

Department of Computer Science Technical Report 213, 1981.

Samet, H.: The Quadtree and Related Hierarchical Data-Structures. Computing Sur-

veys, vol. 16, no. 2, 1984, pp. 187-260.

Strang, G.; and Fix, G. J.: An Analysis of the Finite Element Method. Prentice Hall,

Englewood Cliffs, N.J., 1973.

Dembo, R. S.; Eisenstat, S. C.; and Steihaug, T.: Inexact Newton Methods. SIAM J.

Num. Anal., vol. 19, no. 2, 1982, pp. 400-408.

Bank, R. E.; and Rose, D. J.: Global Approximate Newton Methods. Numerische Math-

ematik, vol. 37, no. 2, 1981, pp. 279-295.

Babu_ka, I.; and Miller, A.: A-posteriori Error Estimates and Adaptive Techniques for

the Finite Element Method. Tech. Note BN-968, Institute for Physical Science and

Technology, University of Maryland, June 1981.

Babu_ka, I.; Zienkiewicz, O. C.; Gago, J.; and de A. Oliveira, E. R., eds.: Accuracy

Estimates and Adaptive Refinements in Finite Element Computations, John Wiley &

Sons, New York, 1986.

Bank, R. E.: Analysis of a Local A posteriori Error Estimate for Elliptic Equations.

Accuracy Estimates and Adaptive Refinements in Finite Element Computations, John

Wiley & Sons, New York, p. 119.

245



[64]

[65]

[66]

[67]

[68]

[69]

[7O]

[71]

[72]

[73]

[74]

[75]

Bank, R. E.: The Efficient Implementation of Local Mesh Refinement Algorithms. Adap-

tive Computational Methods for Partial Differential Equations, I. Babu_ka, J. Chandra,

and J. E. Flaherty, eds., SIAM Publications, 1983, pp. 74-81.

Berger, M. J.; and Jameson, A.: Automatic Adaptive Grid Refinement for the Euler

Equations. AIAA Journal, vol. 23, no. 4, 1985, pp. 561-568.

Dannenhoffer, J. F., III; and Baron, J. R.: Grid Adaptation for the 2-D Euler Equations.
AIAA Paper 85-0484, Jan. 1985.

LShner, R.; Morgan, K.; and Zienkiewicz, O. C.: Adaptive Grid Refinement for the

Compressible Euler Equations. Accuracy Estimates and Adaptive Refinements in Finite

Element Computations, John Wiley & Sons, New York, p. 281.

Oden, J. T.; Strouboulis, T.; and Devloo, P.: Adaptive Finite Element Methods for

High-Speed Compressible Flows. Inter. J. Numer. Meth. in Fluids, vol. 7, no. 11, 1987,
pp. 1211-1228.

Zienkiewicz, O. C.; Xi-Kui, L.; and Nakazawa, S.: Iterative Solution of Mixed Problems

and the Stress Recovery Procedures. Communications in Applied Numerical Methods,
vol. 1, no. 1, 1985, pp. 3-9.

Bramble, J. H.; and Schatz, A. H.: Higher Order Local Accuracy by Averaging in the

Finite Element Method. Mathematics of Computation, vol. 31, no. 137, 1977, pp. 94-111.

Clark, C. C.; and Foutch, D. W.: PARC Analysis of an Axisymmetric Turbofan Nozzle.

Boeing Commercial Airplanes Technical Report PROP-BN31U-C89-020, 1989.

Cooper, G. K.: The PARC Code: Theory and Usage. Arnold Engineering Development

Center Technical Report AEDC-TR-87-24, 1987. (Distribution limited to Department
of Defense.)

Shankar, V.; Szema, K.; and Bonner, E.: Full Potential Method for Analysis/Design of

Complex Aerospace Configurations. NASA CR-3982, 1986.

Shankar, V.; Szema, K.; and Chakravarthy, S.: Supersonic Flow Computations Over

Aerospace Configurations Using an Euler Marching Solver. NASA CR-4085, 1987.

Shapiro, A. H.: The Dynamics and Thermodynamics of Compressible Fluid Flow,
Ronald Press Company, 1953.

[76] Liepmann, H. W.; and Roshko, A.: Elements of Gasdynamics, John Wiley & Sons, 1957.

[77] Hafez, M.: Progress in Finite Element Techniques for Transonic Flows. AIAA Paper 83-
1919, July 1983.

246



[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[9o]

[91]

Babugka, I.; and Dorr, M. R.: Error Estimates for the Combined h and p Versions of

the Finite Element Method. Numerische Mathematik, vol. 37, no. 2, 1981, pp. 257-277.

Babugka, I.; and Rheinboldt, W. C.: Adaptive Finite Element Processes in Structural

Mechanics. Elliptic Problem Solvers II, G. Birkhoff and A. Schoenstadt, eds., Academic

Press, 1984, pp. 345-377.

Patera, A. T.: A Spectral Element Method for Fluid Dynamics: Laminar Flow in a

Channel Expansion. J. Computational Physics, vol. 54, no. 3, 1984, pp. 468-488.

Fischer, P. F.; Ronquist, E. R.; and Patera, A. T.: Parallel Supercomputing-Methods,

Algorithms and Applications. John Wiley & Sons, 1988.

Saaris, G. R.; Gilkey, R. D.; Smit, K. L.; and Tinoco, E. N.: Transonic Analysis of

Complex Configurations Using TRANAIR Program. SAE Paper 892289, 1989.

Fraenkel, L. E.: On Corner Eddies in Plane Inviscid Shear Flow. J. Fluid Mech., vol. 11,

no. 3, 1961, pp. 400-406.

Chorin, A. J.: Estimates of Intermittency, Spectra, and Blow-up in Developed Tur-

bulence. Communications on Pure and Applied Mathematics, vol. 34, Nov. 1981,

pp. 853-866.

Johnson, F. T.; Bussoletti, J. E.; Woo, A. C.; and Young, D. P.: A Transonic Rectangular

Grid Embedded Panel Method. Advances in Computational Transonics, Pineridge Press

Ltd., Swansea, Wales, 1984.

George, K. P.; Ravichandran, K. S.; Rangarajan, R.; and Desai, S. S.: Vortex Simulation

in Full Potential Solver on a Cartesian Grid. Aeronautical Development Agency and

National Aeronautical Laboratory, Bangalore, India, 1988. (To be published.)

McLean, J. D.; and Matoi, T. K.: Shock/Boundary-Layer Interaction Model for Three-

Dimensional Transonic Flow Calculations. Turbulent Shear Layer/Shock-Wave Interac-

tions, 1986, pp. 311-321.

Chandra, R.: Conjugate Gradient Methods for Partial Differential Equations. Yale Uni-

versity Research Report 129, 1978.

James, R. A.: The Solution of Poisson's Equation for Isolated Source Distributions. J.

Computational Physics, vol. 25, no. 2, 1977, pp. 71-93.

Buneman, O.: Analytic Inversion of the Five-Point Poisson Operator. J. Comput. Phys.,

vol. 8, no. 3, 1971, pp. 500-505.

Rabiner, L. R.; and Gold, B.: Theory and Application of Digital Signal Processing.

Prentice-Hall, 1975.

247



[92]

[93]

[94]

[95]

[96]

[97]

[98]

Hurd, A. E.: and Loeb, P. A., eds.: Introduction to Nonstandard Analysis, Pure and

Applied Mathematics Series, Vol. 181. Academic Press, 1985.

Zygmund, A.: Trigonometric Series, Vol. II. Cambridge University Press, 1968.

Swarztrauber, P. N.: The Methods of Cyclic Reduction, Fourier Analysis, and the FACR

Algorithm for the Discrete Solution of Poisson's Equation on a Rectangle. SIAM Review,

vol. 19, no. 3, 1977, pp. 490-501.

Cooley, J. W.; Lewis, P. A. W.; and Welch, P. D.: The Fast Fourier Transform Algo-

rithm: Programming Considerations in the Calculation of Sine, Cosine, and Laplace

Transforms. J. Sound and Vibration, vol. 12, no. 3, 1970, pp. 315-337.

Temperton, C.: Direct Methods for the Solution of the Discrete Poisson Equation: Some

Comparisons. J. Comp. Physics, vol. 31, no. 1, 1979, pp. 1-20.

George, A.; and Liu, J. W. H.: Computer Solution of Large Sparse Positive Definite

Systems. Prentice Hall, Englewood Cliffs, N.J., 1981.

Knuth, D. E.: The Art of Computer Programming, Volume 3, Sorting and Searching,

Addison-Wesley, 1973.

[99] Pissanetzky, S.: Sparse Matrix Technology, Academic Press, 1981.

248







Form Approved

REPORT DOCUMENTATION PAGE DUBNoo7o4.o188

Public reporling burden tot thlll collection Of tnformstion ill estimsted Io sveta0e 1 hour pet response, Including the time for reviewing InlltructJonll. searching existing date Ioufcel,
gathering Ind rnaintslnlng the dBtl needed, lind completing and reviewing the collecttco of Information. Send cOfflmerltl rsgerdlng this burden eltJrtllle or any olher impe¢l o1 this

collection of information, including suggeltlOne for reducing this burden, to Wllhtnaton Heidquertete Services, Directorate for Intormetlon Operations end Reports, 1215 Jefferson

Devil Highway, Suite 1204, Arlington. VA 22202-4302, end to the Office of Management Imd Budget, Paperwork Reduction Pfo_ect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Lesveblsnk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1992 Contractor Re)ort

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

TranAir: A Full-Potential, Solution-Adaptive, Rectangular Grid Code for

Predicting Subsonic, Transonic, and Supersonic Flows About Arbitrary
Configurations--Theory Document

_. AUTHOR(S)

F. T. Johnson, S. S. Samant, M. B. Bieterman, R. G. Melvin,

D. P. Young, J. E. Bussoletti, and C. L. Hilmes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Boeing Military Airplane Company
P. O. Box 3707, M/S 7K-06

Seattle, WA 98124-2207

g, SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Ames Research Center

Moffett Field, CA 94035-1000

C NAS2-12513

WU 505-61-21

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-90093

10. SPONSORING/MONITORING

AGENCY REPORTNUMBER

NASA CR-4348

11. SUPPLEMENTARY NOTES

PointofContact: M. Madson, Ames Research Center, MS 227-2, Mof_ttField, CA94035-1000

(415)604-3621

12=. DISTRIBUTION/AVAILABILITY STATEMENT

,.,q

Subject Category - 02

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with

subsonic or supersonic freestream) has been developed. This program provides accurate and efficient

simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a
typical panel method program.

The numerical method implemented in TranAir is described in this report. The method solves the full

potential equation subject to a set of general boundary conditions and can handle regions with differing total
pressure and temperature. The boundary value problem is discretized using the finite element method on a

locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on
the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear

discrete system arising from the finite element method is solved using a preconditioned Krylov subspace
method embedded in an inexact Newton method. The solution is obtained on a sequence of successively

refined grids which are either constructed adaptively based on estimated solution errors or are predetermined
based on user inpuL_. Many results obtained by using TranAir to analyze aerodynamic configurations are

presented. (See User's Manual, NASA CR-4349.)
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